Software as a Service (SaaS)

Analysis of software-as-a-service offerings with a database or analytic focus, or data connectivity tools focused on SaaS. Related subjects include:

July 26, 2011

Remote machine-generated data

I refer often to machine-generated data, which is commonly generated inexpensively and in log-like formats, and is often best aggregated in a big bit bucket before you try to do much analysis on it. The term has caught on, to the point that perhaps it’s time to distinguish more carefully among different kinds of machine-generated data. In particular, I think it may be useful to distinguish between:

Here’s what I’m thinking of for the second category. I rather frequently hear of cases in which data is generated by large numbers of remote machines, which occasionally send messages home. For example:  Read more

July 15, 2011

Soundbites: the Facebook/MySQL/NoSQL/VoltDB/Stonebraker flap, continued

As a follow-up to the latest Stonebraker kerfuffle, Derrick Harris asked me a bunch of smart followup questions. My responses and afterthoughts include:

Continuing with that discussion of DBMS alternatives:

And while we’re at it — going schema-free often makes a whole lot of sense. I need to write much more about the point, but for now let’s just say that I look favorably on the Big Four schema-free/NoSQL options of MongoDB, Couchbase, HBase, and Cassandra.

July 5, 2011

Eight kinds of analytic database (Part 2)

In Part 1 of this two-part series, I outlined four variants on the traditional enterprise data warehouse/data mart dichotomy, and suggested what kinds of DBMS products you might use for each. In Part 2 I’ll cover four more kinds of analytic database — even newer, for the most part, with a use case/product short list match that is even less clear.  Read more

June 26, 2011

What to think about BEFORE you make a technology decision

When you are considering technology selection or strategy, there are a lot of factors that can each have bearing on the final decision — a whole lot. Below is a very partial list.

In almost any IT decision, there are a number of environmental constraints that need to be acknowledged. Organizations may have standard vendors, favored vendors, or simply vendors who give them particularly deep discounts. Legacy systems are in place, application and system alike, and may or may not be open to replacement. Enterprises may have on-premise or off-premise preferences; SaaS (Software as a Service) vendors probably have multitenancy concerns. Your organization can determine which aspects of your system you’d ideally like to see be tightly integrated with each other, and which you’d prefer to keep only loosely coupled. You may have biases for or against open-source software. You may be pro- or anti-appliance. Some applications have a substantial need for elastic scaling. And some kinds of issues cut across multiple areas, such as budget, timeframe, security, or trained personnel.

Multitenancy is particularly interesting, because it has numerous implications. Read more

May 24, 2011

Quick thoughts on Oracle-on-Amazon

Amazon has a page up for what it calls Amazon RDS for Oracle Database. You can rent Amazon instances suitable for running Oracle, and bring your own license (BYOL), or you can rent a “License Included” instance that includes Oracle Standard Edition One (a cheap version of Oracle that is limited to two sockets).

My quick thoughts start:

Of course, those are all standard observations every time something that’s basically on-premises software is offered in the cloud. They’re only reinforced by the fact that the only Oracle software Amazon can actually license you is a particularly low-end edition.

And Oracle is indeed on-premises software. In particular, Oracle is hard enough to manage when it’s on your premises, with a known hardware configuration; who would want to try to manage a production instance of Oracle in the cloud?

May 21, 2011

Object-oriented database management systems (OODBMS)

There seems to be a fair amount of confusion about object-oriented database management systems (OODBMS). Let’s start with a working definition:

An object-oriented database management system (OODBMS, but sometimes just called “object database”) is a DBMS that stores data in a logical model that is closely aligned with an application program’s object model. Of course, an OODBMS will have a physical data model optimized for the kinds of logical data model it expects.

If you’re guessing from that definition that there can be difficulties drawing boundaries between the application, the application programming language, the data manipulation language, and/or the DBMS — you’re right. Those difficulties have been a big factor in relegating OODBMS to being a relatively niche technology to date.

Examples of what I would call OODBMS include:  Read more

May 13, 2011

Introduction to SnapLogic

I talked with the SnapLogic team last week, in connection with their SnapReduce Hadoop-oriented offering. This gave me an opportunity to catch up on what SnapLogic is up to overall. SnapLogic is a data integration/ETL (Extract/Transform/Load) company with a good pedigree: Informatica founder Gaurav Dillon invested in and now runs SnapLogic, and VC Ben Horowitz is involved. SnapLogic company basics include:

SnapLogic’s core/hub product is called SnapCenter. In addition, for any particular kind of data one might want to connect, there are “snaps” which connect to — i.e. snap into — SnapCenter.

SnapLogic’s market position(ing) sounds like Cast Iron’s, by which I mean: Read more

April 14, 2011

Attensity update

I talked with Michelle de Haaff and Ian Hersey of Attensity back in February. We covered a lot of ground, so let’s start with a very high-level view.

The four most interesting technical points were probably:

Some more specific notes include:  Read more

March 15, 2011

MySQL soundbites

Oracle announced MySQL enhancements, plus intentions to use MySQL to compete against Microsoft SQL Server. My thoughts, lightly edited from an instant message Q&A, include:

The last question was “Is there an easy shorthand to describe how Oracle DB is superior to MySQL even with these improvements?” My responses, again lightly edited, were:  Read more

August 22, 2010

Workday comments on its database architecture

In my discussion of Workday’s technology, I gave an estimate that Workday’s database, if relationally designed, would require “1000s” of tables. That estimate came from Workday, Inc. CTO Stan Swete, in a thoughtful email that made several points about Workday’s database strategy. Workday kindly gave me permission to quote it below.
Read more

← Previous PageNext Page →

Feed: DBMS (database management system), DW (data warehousing), BI (business intelligence), and analytics technology Subscribe to the Monash Research feed via RSS or email:

Login

Search our blogs and white papers

Monash Research blogs

User consulting

Building a short list? Refining your strategic plan? We can help.

Vendor advisory

We tell vendors what's happening -- and, more important, what they should do about it.

Monash Research highlights

Learn about white papers, webcasts, and blog highlights, by RSS or email.