Software as a Service (SaaS)
Analysis of software-as-a-service offerings with a database or analytic focus, or data connectivity tools focused on SaaS. Related subjects include:
- Data mart outsourcing
- (in Text Technologies) Text analytics SaaS
- (in The Monash Report) Strategic issues in SaaS
Amazon Redshift and its implications
Merv Adrian and Doug Henschen both reported more details about Amazon Redshift than I intend to; see also the comments on Doug’s article. I did talk with Rick Glick of ParAccel a bit about the project, and he noted:
- Amazon Redshift is missing parts of ParAccel, notably the extensibility framework.
- ParAccel did some engineering to make its DBMS run better in the cloud.
- Amazon did some engineering in the areas it knows better than ParAccel — cloud provisioning, cloud billing, and so on.
“We didn’t want to do the deal on those terms” comments from other companies suggest ParAccel’s main financial take from the deal is an already-reported venture investment.
The cloud-related engineering was mainly around communications, e.g. strengthening error detection/correction to make up for the lack of dedicated switches. In general, Rick seemed more positive on running in the (Amazon) cloud than analytic RDBMS vendors have been in the past.
So who should and will use Amazon Redshift? For starters, I’d say: Read more
ParAccel update
In connection with Amazon’s Redshift announcement, ParAccel reached out, and so I talked with them for the first time in a long while. At the highest level:
- ParAccel now has 60+ customers, up from 30+ two years ago and 40ish soon thereafter.
- ParAccel is now focusing its development and marketing on analytic platform capabilities more than raw database performance.
- ParAccel is focusing on working alongside other analytic data stores — relational or Hadoop — rather than supplanting them.
There wasn’t time for a lot of technical detail, but I gather that the bit about working alongside other data stores:
- Is relatively new.
- Works via SELECT statements that reach out to the other data stores.
- Is called “on-demand integration”.
- Is built in ParAccel’s extensibility/analytic platform framework.
- Uses HCatalog when reaching into Hadoop.
Also, it seems that ParAccel:
- Is in the early stages of writing its own analytic functions.
- Bundles Fuzzy Logix and actually has some users for that.
Categories: Amazon and its cloud, Cloud computing, Data warehousing, Hadoop, Market share and customer counts, ParAccel, Predictive modeling and advanced analytics, Specific users | 5 Comments |
Introduction to Continuuity
I chatted with Todd Papaioannou about his new company Continuuity. Todd is as handy at combining buzzwords as he is at concatenating vowels, and so Continuuity — with two “U”s — is making a big data fabric platform as a service with REST APIs that runs over Hadoop and HBase in the private or public clouds. I found the whole thing confusing, in that:
- I recoil against buzzwords. In particular …
- … I pay as little attention to distinctions among PaaS/IaaS/WaaS — Platform/Infrastructure/Whatever as a Service — as I can.
- The Continuuity story sounds Heroku-like, but Todd doesn’t want Continuuity compared to Heroku.
- Todd does want Continuuity discussed in terms of the application server category, but:
- It is hard to discuss app servers without segueing quickly amongst development, deployment, and data connectivity, and Continuuity is no exception to that rule.
- There is doubt as to whether using app servers makes any sense.
But all confusion aside, there are some interesting aspects to Continuuity. Read more
Categories: Application servers, Cloud computing, Hadoop, HBase, MapReduce, Parallelization, Predictive modeling and advanced analytics, Software as a Service (SaaS) | 7 Comments |
That multi-tenancy discussion revisited
Keeping in mind Monash’s Third Law of Commercial Semantics,
No market categorization is ever precise
I’ll try to clarify my response to Oracle’s claims about Oracle12c being a “multi-tenant” DBMS.
I wrote a couple days ago:
Oracle is confusing people with its comments on multi-tenancy. I suspect:
- What Oracle is talking about when it says “multi-tenancy” is more like consolidation than true multi-tenancy.
- Probably there are a couple of true multi-tenancy features as well.
Now I’m even having doubts about the second part.
In simplest terms:
- Multi-tenancy is about making a single thing appear to be many different ones — typically one for each customer. Here the “things” can be databases and/or instances of the (same) application that talks to them.
- Database consolidation is about letting many different databases be hosted or managed more as one.
But from everything I’ve heard:
- Oracle12c’s announced new features improve database consolidation, not multi-tenancy.
More detail may be found at the links above.
Categories: Oracle, Software as a Service (SaaS) | 4 Comments |
Notes on the Oracle OpenWorld Sunday keynote
I’m not at Oracle OpenWorld, but as usual that won’t keep me from commenting. My bottom line on the first night’s announcements is:
- At many large enterprises, Oracle has a lock on much of their IT efforts. (But not necessarily in the internet or investigative analytics areas.) Tonight’s announcements serve to strengthen that.
- Tonight’s announcements do little to help Oracle in other market segments.
In particular:
1. At the highest level, my view of Oracle’s strategy is the same as it’s been for several years:
Clayton Christensen’s The Innovator’s Solution teaches us that Oracle should focus on selling a thick stack of technology to its highest-end customers, and that’s exactly what Oracle does focus on.
2. Tonight’s news is closely in line with what Oracle’s Juan Loaiza told me three years ago, especially:
- Oracle thinks flash memory is the most important hardware technology of the decade, one that could lead to Oracle being “bumped off” if they don’t get it right.
- Juan believes the “bulk” of Oracle’s business will move over to Exadata-like technology over the next 5-10 years. Numbers-wise, this seems to be based more on Exadata being a platform for consolidating an enterprise’s many Oracle databases than it is on Exadata running a few Especially Big Honking Database management tasks.
3. Oracle is confusing people with its comments on multi-tenancy. I suspect:
- What Oracle is talking about when it says “multi-tenancy” is more like consolidation than true multi-tenancy.
- Probably there are a couple of true multi-tenancy features as well.
4. SaaS (Software as a Service) vendors don’t want to use Oracle, because they don’t want to pay for it.* This limits the potential impact of Oracle’s true multi-tenancy features. Even so: Read more
Notes on Hadoop adoption
I successfully resisted telephone consulting while on vacation, but I did do some by email. One was on the oft-recurring subject of Hadoop adoption. I think it’s OK to adapt some of that into a post.
Notes on past and current Hadoop adoption include:
- Enterprise Hadoop adoption is for experimental uses or departmental production (as opposed to serious enterprise-level production). Indeed, it’s rather tough to disambiguate those two. If an enterprise uses Hadoop to search for new insights and gets a few, is that an experiment that went well, or is it production?
- One of the core internet-business use cases for Hadoop is a many-step ETL, ELT, and data refinement pipeline, with Hadoop executing some or many of the steps. But I don’t think that’s in production at many enterprises yet, except in the usual forward-leaning sectors of financial services and (we’re all guessing) national intelligence.
- In terms of industry adoption:
- Financial services on the investment/trading side are all over Hadoop, just as they’re all over any technology. Ditto national intelligence, one thinks.
- Consumer financial services, especially credit card, are giving Hadoop a try too, for marketing and/or anti-fraud.
- I’m sure there’s some telecom usage, but I’m hearing of less than I thought I would. Perhaps this is because telcos have spent so long optimizing their data into short, structured records.
- Whatever consumer financial services firms do, retailers do too, albeit with smaller budgets.
Thoughts on how Hadoop adoption will look going forward include: Read more
Categories: Cloud computing, Data warehouse appliances, Data warehousing, EAI, EII, ETL, ELT, ETLT, Hadoop, Investment research and trading, Telecommunications | 3 Comments |
Database challenges in multi-tenancy support
I predicted 2 months ago that Oracle 12c would have some kind of improved support for multi-tenancy; Larry Ellison confirmed on this week’s earnings call that it will. So maybe it’s time to think about what such support could or should mean. I’m actually still on vacation, so I’d like to keep this short, but here are a few notes.
- The goal of multi-tenancy is:
- SaaS (Software as a Service) users should get all the flexibility, performance, security, and control they would expect if their SaaS vendor hosted a software instance and database just for them.
- SaaS vendors shouldn’t have to do any more than host a single instance of the application software and a single database.
- In its purest form, that goal is a nice dream.
- Separation-of-access and related security issues are the most obvious requirement of multi-tenancy. However, the simplest ways to meet the requirement stress your SELECT statements. I alluded to that in a post about salesforce.com.
- In a clustered, multi-tenant SaaS database, you want each tenant’s individual database to be properly clustered. Perhaps you want it all on one server. Perhaps you want it striped across the cluster. In any case, your DBMS’ clustering has to be flexible and granular enough to make that possible.
- Caching should also be as good for each tenant as if that tenant had a standalone database.
- Individual tenants need to be able to administer their databases, at least in certain ways, as if they were standalone, or else the SaaS vendor needs to be able to do it for them.
- This is implicit in what I said above about users/roles/permissions, clustering, and caching.
- It really gets interesting when we take into account application customization and the resulting schema changes.
- And before we get too excited about any of this, please note that there are many SaaS vendors in the world doing just fine without explicit DBMS multi-tenancy features.
Categories: Clustering, Oracle, Software as a Service (SaaS) | 8 Comments |
Clustrix 4.0 and other Clustrix stuff
It feels like time to write about Clustrix, which I last covered in detail in May, 2010, and which is releasing Clustrix 4.0 today. Clustrix and Clustrix 4.0 basics include:
- Clustrix makes a short-request processing appliance.
- As you might guess from the name, Clustrix is clustered — peer-to-peer, with no head node.
- The Clustrix appliance uses flash/solid-state storage.
- Traditionally, Clustrix has run a MySQL-compatible DBMS.
- Clustrix 4.0 introduces JSON support. More on that below.
- Clustrix 4.0 introduces a bunch of administrative features, and parallel backup.
- Also in today’s announcement is a Rackspace partnership to offer Clustrix remotely, at monthly pricing.
- Clustrix has been shipping product for about 4 years.
- Clustrix has 20 customers in production, running >125 Clustrix nodes total.
- Clustrix has 60 people.
- List price for a (smallest size) Clustrix system is $150K for 3 nodes. Highest-end maintenance costs 15%.
- There’s also a $100K version meant for high availability/disaster recovery. Over half of Clustrix’s customers use off-site disaster recovery.
- Clustrix is raising a C round. Part of it has already been raised from insiders, as a kind of bridge.
The biggest Clustrix installation seems to be 20 nodes or so. Others seem to have 10+. I presume those disaster recovery customers have 6 or more nodes each. I’m not quite sure how the arithmetic on that all works; perhaps the 125ish count of nodes is a bit low.
Clustrix technical notes include: Read more
Categories: Cloud computing, Clustering, Clustrix, Database compression, Market share and customer counts, MySQL, OLTP, Pricing, Structured documents | 4 Comments |
Is salesforce.com going to stick with Oracle?
Surprisingly often, I’m asked “Is salesforce.com going to stick with Oracle?” So let me refer to and expand upon my previous post about salesforce.com’s database architecture by saying:
- Today, salesforce.com uses Oracle as one of several ways to store data.
- salesforce.com’s use of Oracle isn’t very relational.
- salesforce.com is investing in HBase, after exploring other NoSQL options.
- salesforce.com surely has a very inexpensive Oracle license, reducing pressure to move any time soon. However …
- … salesforce.com’s use of Oracle has flipped from being a marketing advantage to a marketing liability.*
- It will be some years before any NoSQL option is mature enough to handle salesforce.com’s work.
- Especially through Heroku, salesforce.com is getting ever more experience with PostgreSQL.
Some day, Marc Benioff will probably say “We turned off Oracle across most of our applications a while ago, and nobody outside the company even noticed.”
*in that
- The marketing benefit “Oracle — it’s what the trustworthy big boys use” hardly matters any more.
- The marketing annoyance of Larry Ellison citing salesforce.com’s use of Oracle keeps growing.
Note: This blog post is less readable than it would be if I’d found a better workaround to WordPress’ bugs in the area of nested bullet points. I’m sorry.
Categories: NoSQL, OLTP, Oracle, salesforce.com, Software as a Service (SaaS) | 10 Comments |
Metamarkets’ back-end technology
This is part of a three-post series:
- Introduction to Metamarkets and Druid
- Druid overview
- Metamarkets’ back-end technology (this post)
The canonical Metamarkets batch ingest pipeline is a bit complicated.
- Data lands on Amazon S3 (uploaded or because it was there all along).
- Metamarkets processes it, primarily via Hadoop and Pig, to summarize and denormalize it, and then puts it back into S3.
- Metamarkets then pulls the data into Hadoop a second time, to get it ready to be put into Druid.
- Druid is notified, and pulls the data from Hadoop at its convenience.
By “get data read to be put into Druid” I mean:
- Build the data segments (recall that Druid manages data in rather large segments).
- Note metadata about the segments.
That metadata is what goes into the MySQL database, which also retains data about shards that have been invalidated. (That part is needed because of the MVCC.)
By “build the data segments” I mean:
- Make the sharding decisions.
- Arrange data columnarly within shard.
- Build a compressed bitmap for each shard.
When things are being done that way, Druid may be regarded as comprising three kinds of servers: Read more