Software as a Service (SaaS)
Analysis of software-as-a-service offerings with a database or analytic focus, or data connectivity tools focused on SaaS. Related subjects include:
- Data mart outsourcing
- (in Text Technologies) Text analytics SaaS
- (in The Monash Report) Strategic issues in SaaS
Notes and comments, March 17, 2014
I have ever more business-advice posts up on Strategic Messaging. Recent subjects include pricing and stealth-mode marketing. Other stuff I’ve been up to includes:
The Spark buzz keeps increasing; almost everybody I talk with expects Spark to win big, probably across several use cases.
Disclosure: I’ll soon be in a substantial client relationship with Databricks, hoping to improve their stealth-mode marketing. 😀
The “real-time analytics” gold rush I called out last year continues. A large fraction of the vendors I talk with have some variant of “real-time analytics” as a central message.
Basho had a major change in leadership. A Twitter exchange ensued. 🙂 Joab Jackson offered a more sober — figuratively and literally — take.
Hadapt laid off its sales and marketing folks, and perhaps some engineers as well. In a nutshell, Hadapt’s approach to SQL-on-Hadoop wasn’t selling vs. the many alternatives, and Hadapt is doubling down on poly-structured data*/schema-on-need.
*While Hadapt doesn’t to my knowledge use the term “poly-structured data”, some other vendors do. And so I may start using it more myself, at least when the poly-structured/multi-structured distinction actually seems significant.
WibiData is partnering with DataStax, WibiData is of course pleased to get access to Cassandra’s user base, which gave me the opportunity to ask why they thought Cassandra had beaten HBase in those accounts. The answer was performance and availability, while Cassandra’s traditional lead in geo-distribution wasn’t mentioned at all.
Disclosure: My fingerprints are all over that deal.
In other news, WibiData has had some executive departures as well, but seems to be staying the course on its strategy. I continue to think that WibiData has a really interesting vision about how to do large-data-volume interactive computing, and anybody in that space would do well to talk with them or at least look into the open source projects WibiData sponsors.
I encountered another apparently-popular machine-learning term — bandit model. It seems to be glorified A/B testing, and it seems to be popular. I think the point is that it tries to optimize for just how much you invest in testing unproven (for good or bad) alternatives.
I had an awkward set of interactions with Gooddata, including my longest conversations with them since 2009. Gooddata is in the early days of trying to offer an all-things-to-all-people analytic stack via SaaS (Software as a Service). I gather that Hadoop, Vertica, PostgreSQL (a cheaper Vertica alternative), Spark, Shark (as a faster version of Hive) and Cassandra (under the covers) are all in the mix — but please don’t hold me to those details.
I continue to think that computing is moving to a combination of appliances, clusters, and clouds. That said, I recently bought a new gaming-class computer, and spent many hours gaming on it just yesterday.* I.e., there’s room for general-purpose workstations as well. But otherwise, I’m not hearing anything that contradicts my core point.
*The last beta weekend for The Elder Scrolls Online; I loved Morrowind.
SaaS appliances, SaaS data centers, and customer-premises SaaS
Conclusions
I think that most sufficiently large enterprise SaaS vendors should offer an appliance option, as an alternative to the core multi-tenant service. In particular:
- SaaS appliances address customer fears about security, privacy, compliance, performance isolation, and lock-in.
- Some of these benefits occur even if the appliance runs in the same data centers that host the vendor’s standard multi-tenant SaaS. Most of the rest occur if the customer can choose a co-location facility in which to place the appliance.
- Whether many customers should or will use the SaaS appliance option is somewhat secondary; it’s a check-mark item. I.e., many customers and prospects will be pleased that the option at least exists.
How I reached them
Core reasons for selling or using SaaS (Software as a Service) as opposed to licensed software start:
- The SaaS vendor handles all software upgrades, and makes them promptly. In principle, this benefit could also be achieved on a dedicated system on customer premises (or at the customer’s choice of co-location facility).
- In addition, the SaaS vendor handles all the platform and operational stuff — hardware, operating system, computer room, etc. This benefit is antithetical to direct customer control.
- The SaaS vendor only has to develop for and operate on a tightly restricted platform stack that it knows very well. This benefit is also enjoyed in the case of customer-premises appliances.
Conceptually, then, customer-premises SaaS is not impossible, even though one of the standard Big Three SaaS benefits is lost. Indeed:
- Microsoft Windows and many other client software packages already offer to let their updates be automagically handled by the vendor.
- In that vein, consumer devices such as game consoles already are a kind of SaaS appliance.
- Complex devices of any kind, including computers, will see ever more in the way of “phone-home” features or optional services, often including routine maintenance and upgrades.
But from an enterprise standpoint, that’s all (relatively) simple stuff. So we’re left with a more challenging question — does customer-premises SaaS make sense in the case of enterprise applications or other server software?
Categories: Data warehouse appliances, HP and Neoview, salesforce.com, Software as a Service (SaaS), Surveillance and privacy | 6 Comments |
Thoughts on SaaS
Generalizing about SaaS (Software as a Service) is hard. To prune some of the confusion, let’s start by noting:
- SaaS has been around for over half a century, and at times has been the dominant mode of application delivery.
- The term multi-tenancy is being used in several different ways.
- Multi-tenancy, in the purest sense, is inessential to SaaS. It’s simply an implementation choice that has certain benefits for the SaaS provider. And by the way, …
- … salesforce.com, the chief proponent of the theory that true multi-tenancy is the hallmark of true SaaS, abandoned that position this week.
- Internet-based services are commonly, if you squint a little, SaaS. Examples include but are hardly limited to Google, Twitter, Dropbox, Intuit, Amazon Web Services, and the company that hosts this blog (KnownHost).
- Some of the core arguments for SaaS’ rise, namely the various efficiencies of data center outsourcing and scale, apply equally to the public cloud, to SaaS, and to AEaaS (Anything Else as a Service).
- These benefits are particularly strong for inherently networked use cases. For example, you really don’t want to be hosting your website yourself. And salesforce.com got its start supporting salespeople who worked out of remote offices.
- In theory and occasionally in practice, certain SaaS benefits, namely the outsourcing of software maintenance and updates, could be enjoyed on-premises as well. Whether I think that could be a bigger deal going forward will be explored in future posts.
For smaller enterprises, the core outsourcing argument is compelling. How small? Well:
- What’s the minimum level of IT operations headcount needed for mission-critical systems? Let’s just say “several”.
- What does that cost? Fully burdened, somewhere in the six figures.
- What fraction of the IT budget should such headcount be? As low a double digit percentage as possible.
- What fraction of revenues should be spent on IT? Some single-digit percentage.
So except for special cases, an enterprise with less than $100 million or so in revenue may have trouble affording on-site data processing, at least at a mission-critical level of robustness. It may well be better to use NetSuite or something like that, assuming needed features are available in SaaS form.*
RDBMS and their bundle-mates
Relational DBMS used to be fairly straightforward product suites, which boiled down to:
- A big SQL interpreter.
- A bunch of administrative and operational tools.
- Some very optional add-ons, often including an application development tool.
Now, however, most RDBMS are sold as part of something bigger.
- Oracle has hugely thickened its stack, as part of an Innovator’s Solution strategy — hardware, middleware, applications, business intelligence, and more.
- IBM has moved aggressively to a bundled “appliance” strategy. Even before that, IBM DB2 long sold much better to committed IBM accounts than as a software-only offering.
- Microsoft SQL Server is part of a stack, starting with the Windows operating system.
- Sybase was an exception to this rule, with thin(ner) stacks for both Adaptive Server Enterprise and Sybase IQ. But Sybase is now owned by SAP, and increasingly integrated as a business with …
- … SAP HANA, which is closely associated with SAP’s applications.
- Teradata has always been a hardware/software vendor. The most successful of its analytic DBMS rivals, in some order, are:
- Netezza, a pure appliance vendor, now part of IBM.
- Greenplum, an appliance-mainly vendor for most (not all) of its existence, and in particular now as a part of EMC Pivotal.
- Vertica, more of a software-only vendor than the others, but now owned by and increasingly mainstreamed into hardware vendor HP.
- MySQL’s glory years were as part of the “LAMP” stack.
- Various thin-stack RDBMS that once were or could have been important market players … aren’t. Examples include Progress OpenEdge, IBM Informix, and the various strays adopted by Actian.
Glassbeam instantiates a lot of trends
Glassbeam checked in recently, and they turn out to exemplify quite a few of the themes I’ve been writing about. For starters:
- Glassbeam has an analytic technology stack focused on poly-structured machine-generated data.
- Glassbeam partially organizes that data into event series …
- … in a schema that is modified as needed.
Glassbeam basics include:
- Founded in 2009.
- Based in Santa Clara. Back-end engineering in Bangalore.
- $6 million in angel money; no other VC.
- High single-digit customer count, …
- … plus another high single-digit number of end customers for an OEM offering a limited version of their product.
All Glassbeam customers except one are SaaS/cloud (Software as a Service), and even that one was only offered a subscription (as oppose to perpetual license) price.
So what does Glassbeam’s technology do? Glassbeam says it is focused on “machine data analytics,” specifically for the “Internet of Things”, which it distinguishes from IT logs.* Specifically, Glassbeam sells to manufacturers of complex devices — IT (most of its sales so far ), medical, automotive (aspirational to date), etc. — and helps them analyze “phone home” data, for both support/customer service and marketing kinds of use cases. As of a recent release, the Glassbeam stack can: Read more
ClearStory, Spark, and Storm
ClearStory Data is:
- One of the two start-ups I’m most closely engaged with.
- Run by a CEO for whom I have great regard, but who does get rather annoying about secrecy. 🙂
- On the verge, finally, of fully destealthing.
I think I can do an interesting post about ClearStory while tap-dancing around the still-secret stuff, so let’s dive in.
ClearStory:
- Has developed a full-stack business intelligence technology — which will however be given a snazzier name than “BI” — that is focused on incorporating a broad variety of third-party information, usually along with some of the customer’s own data. Thus, ClearStory …
- … pushes Variety and Variability to extremes, more so than it stresses Volume and Velocity. But it does want to be used at interactive/memory-centric speeds.
- Has put a lot of effort into user interface, but in ways that fit my theory that UI is more about navigation than actual display.
- Has much of its technical differentiation in the area of data mustering …
- … and much of the rest in DBMS-like engineering.
- Is a flagship user of Spark.
- Also relies on Storm, HDFS (Hadoop Distributed File System) and various lesser open source projects (e.g. the ubiquitous Zookeeper).
- Is to a large extent written in Scala.
- Is at this time strictly a multi-tenant SaaS (Software as a Service) offering, except insofar as there’s an on-premises agent to help feed customers’ own data into the core ClearStory cloud service.
To a first approximation, ClearStory ingests data in a system built on Storm (code name: Stormy), dumps it into HDFS, and then operates on it in a system built on Spark (code name: Sparky). Along the way there’s a lot of interaction with another big part of the system, a metadata catalog with no code name I know of. Or as I keep it straight:
- ClearStory’s end-user UI talks mainly to Sparky, and also to the metadata store.
- ClearStory’s administrative UI talks mainly to Stormy, and also to the metadata store.
Hortonworks business notes
Hortonworks did a business-oriented round of outreach, talking with at least Derrick Harris and me. Notes from my call — for which Rob Bearden didn’t bother showing up — include, in no particular order:
- Hortonworks denies advanced acquisition discussions with either Microsoft and Intel. Of course, that doesn’t exactly contradict the widespread story of Intel having made an acquisition offer. Edit: I have subsequently heard, very credibly, that the denial was untrue.
- As vendors usually do, Hortonworks denies the extreme forms of Cloudera’s suggestion that Hortonworks competitive wins relate to price slashing. But Hortonworks does believe that its license fees often wind up being lower than Cloudera’s, due especially to Hortonworks offering few extra-charge items than Cloudera.
- Hortonworks used a figure of ~75 subscription customers. Edit: That figure turns out in retrospect to have been inflated. This does not include OEM sales through, for example, Teradata, Microsoft Azure, or Rackspace. However, that does include …
- … a small number of installations hosted in the cloud — e.g. ~2 on Amazon Web Services — or otherwise remotely. Also, testing in the cloud seems to be fairly frequent, and the cloud can also be a source of data ingested into Hadoop.
- Since Hortonworks a couple of times made it seem that Rackspace was an important partner, behind only Teradata and Microsoft, I finally asked why. Answers boiled down to a Rackspace Hadoop-as-a-service offering, plus joint work to improve Hadoop-on-OpenStack.
- Other Hortonworks reseller partners seem more important in terms of helping customers consume HDP (Hortonworks Data Platform), rather than for actually doing Hortonworks’ selling for it. (This is unsurprising — channel sales rarely are a path to success for a product that is also appropriately sold by a direct force.)
- Hortonworks listed its major industry sectors as:
- Web and retailing, which it identifies as one thing.
- Media.
- Telecommunications.
- Health care (various subsectors).
- Financial services, which it called “competitive” in the kind of tone that usually signifies “we lose a lot more than we win, and would love to change that”.
In Hortonworks’ view, Hadoop adopters typically start with a specific use case around a new type of data, such as clickstream, sensor, server log, geolocation, or social. Read more
Things I keep needing to say
Some subjects just keep coming up. And so I keep saying things like:
Most generalizations about “Big Data” are false. “Big Data” is a horrific catch-all term, with many different meanings.
Most generalizations about Hadoop are false. Reasons include:
- Hadoop is a collection of disparate things, most particularly data storage and application execution systems.
- The transition from Hadoop 1 to Hadoop 2 will be drastic.
- For key aspects of Hadoop — especially file format and execution engine — there are or will be widely varied options.
Hadoop won’t soon replace relational data warehouses, if indeed it ever does. SQL-on-Hadoop is still very immature. And you can’t replace data warehouses unless you have the power of SQL.
Note: SQL isn’t the only way to provide “the power of SQL”, but alternative approaches are just as immature.
Most generalizations about NoSQL are false. Different NoSQL products are … different. It’s not even accurate to say that all NoSQL systems lack SQL interfaces. (For example, SQL-on-Hadoop often includes SQL-on-HBase.)
Data model churn
Perhaps we should remind ourselves of the many ways data models can be caused to churn. Here are some examples that are top-of-mind for me. They do overlap a lot — and the whole discussion overlaps with my post about schema complexity last January, and more generally with what I’ve written about dynamic schemas for the past several years..
Just to confuse things further — some of these examples show the importance of RDBMS, while others highlight the relational model’s limitations.
The old standbys
Product and service changes. Simple changes to your product line many not require any changes to the databases recording their production and sale. More complex product changes, however, probably will.
A big help in MCI’s rise in the 1980s was its new Friends and Family service offering. AT&T couldn’t respond quickly, because it couldn’t get the programming done, where by “programming” I mainly mean database integration and design. If all that was before your time, this link seems like a fairly contemporaneous case study.
Organizational changes. A common source of hassle, especially around databases that support business intelligence or planning/budgeting, is organizational change. Kalido’s whole business was based on accommodating that, last I checked, as were a lot of BI consultants’. Read more
Categories: Data warehousing, Derived data, Kalido, Log analysis, Software as a Service (SaaS), Specific users, Text, Web analytics | 3 Comments |
The refactoring of everything
I’ll start with three observations:
- Computer systems can’t be entirely tightly coupled — nothing would ever get developed or tested.
- Computer systems can’t be entirely loosely coupled — nothing would ever get optimized, in performance and functionality alike.
- In an ongoing trend, there is and will be dramatic refactoring as to which connections wind up being loose or tight.
As written, that’s probably pretty obvious. Even so, it’s easy to forget just how pervasive the refactoring is and is likely to be. Let’s survey some examples first, and then speculate about consequences. Read more