SAND Technology
Analysis of SAND Technology and its products, such as SAND/DNA. Related subjects include:
Comments on Gartner’s 2012 Magic Quadrant for Data Warehouse Database Management Systems — evaluations
To my taste, the most glaring mis-rankings in the 2012/2013 Gartner Magic Quadrant for Data Warehouse Database Management are that it is too positive on Kognitio and too negative on Infobright. Secondarily, it is too negative on HP Vertica, and too positive on ParAccel and Actian/VectorWise. So let’s consider those vendors first.
Gartner seems confused about Kognitio’s products and history alike.
- Gartner calls Kognitio an “in-memory” DBMS, which is not accurate.
- Gartner doesn’t remark on Kognitio’s worst-in-class* compression.
- Gartner gives Kognitio oddly high marks for a late, me-too Hadoop integration strategy.
- Gartner writes as if Kognitio’s next attempt at the US market will be the first one, which is not the case.
- Gartner says that Kognitio pioneered data warehouse SaaS (Software as a Service), which actually has existed since the pre-relational 1970s.
Gartner is correct, however, to note that Kognitio doesn’t sell much stuff overall.
* non-existent
In the cases of HP Vertica, Infobright, ParAccel, and Actian/VectorWise, the 2012 Gartner Magic Quadrant for Data Warehouse Database Management’s facts are fairly accurate, but I dispute Gartner’s evaluation. When it comes to Vertica: Read more
Notes on some basic database terminology
In a call Monday with a prominent company, I was told:
- Teradata, Netezza, Greenplum and Vertica aren’t relational.
- Teradata, Netezza, Greenplum and Vertica are all data warehouse appliances.
That, to put it mildly, is not accurate. So I shall try, yet again, to set the record straight.
In an industry where people often call a DBMS just a “database” — so that a database is something that manages a database! — one may wonder why I bother. Anyhow …
1. The products commonly known as Oracle, Exadata, DB2, Sybase, SQL Server, Teradata, Sybase IQ, Netezza, Vertica, Greenplum, Aster, Infobright, SAND, ParAccel, Exasol, Kognitio et al. all either are or incorporate relational database management systems, aka RDBMS or relational DBMS.
2. In principle, there can be difficulties in judging whether or not a DBMS is “relational”. In practice, those difficulties don’t arise — yet. Every significant DBMS still falls into one of two categories:
- Relational:
- Was designed to do relational stuff* from the get-go, even if it now does other things too.
- Supports a lot of SQL.
- Non-relational:
- Was designed primarily to do non-relational things.*
- Doesn’t support all that much SQL.
*I expect the distinction to get more confusing soon, at which point I’ll adopt terms more precise than “relational things” and “relational stuff”.
3. There are two chief kinds of relational DBMS: Read more
Our clients, and where they are located
From time to time, I disclose our vendor client lists. Another iteration is below, the first since a little over a year ago. To be clear:
- This is a list of Monash Advantage members.
- All our vendor clients are Monash Advantage members, unless …
- … we work with them primarily in their capacity as technology users. (A large fraction of our user clients happen to be SaaS vendors.)
- We do not usually disclose our user clients.
- We do not usually disclose our venture capital clients, nor those who invest in publicly-traded securities.
- Excluded from this round of disclosure is one vendor I have never written about.
- Included in this round of disclosure is one client paying for services partly in stock. All our other clients are cash-only.
For reasons explained below, I’ll group the clients geographically. Obviously, companies often have multiple locations, but this is approximately how it works from the standpoint of their interactions with me. Read more
Clarifying SAND’s customer metrics, positioning and technical story
Talking with my clients at SAND can be confusing. That said:
- I need to revise my figures for SAND’s customer count way downward.
- SAND finally has a reasonably clear positioning.
- SAND’s product actually seems to have a lot of features.
A few months ago, I wrote:
SAND Technology reported >600 total customers, including >100 direct.
Upon talking with the company, I need to revise that figure downward, from > 600 to 15.
Workload management and RAM
Closing out my recent round of Teradata-related posts, here’s a little anomaly:
- Teradata is proud that Teradata 14’s workload management now explicitly manages I/O, to go with Teradata’s long-standing management of CPU. Teradata’s WLM still does not explicitly manage RAM.
- Aster is proud that Aster 5’s workload management now explicitly manages RAM, to go along with the WLM capabilities Aster has had for a while managing CPU and I/O. Aster’s Tasso Argyros believes this is an important capability, at least in some edge cases.
- Mike Pilcher of SAND emailed me that SAND’s WLM capabilities to explicitly manage CPU, I/O, and RAM are very well-received by the marketplace.
Categories: Aster Data, Data warehousing, SAND Technology, Teradata, Workload management | 4 Comments |
Eight kinds of analytic database (Part 2)
In Part 1 of this two-part series, I outlined four variants on the traditional enterprise data warehouse/data mart dichotomy, and suggested what kinds of DBMS products you might use for each. In Part 2 I’ll cover four more kinds of analytic database — even newer, for the most part, with a use case/product short list match that is even less clear. Read more
Eight kinds of analytic database (Part 1)
Analytic data management technology has blossomed, leading to many questions along the lines of “So which products should I use for which category of problem?” The old EDW/data mart dichotomy is hopelessly outdated for that purpose, and adding a third category for “big data” is little help.
Let’s try eight categories instead. While no categorization is ever perfect, these each have at least some degree of technical homogeneity. Figuring out which types of analytic database you have or need — and in most cases you’ll need several — is a great early step in your analytic technology planning. Read more
Columnar DBMS vendor customer metrics
Last April, I asked some columnar DBMS vendors to share customer metrics. They answered, but it took until now to iron out a couple of details. Overall, the answers are pretty impressive. Read more
Updating our vendor client disclosures
Edit: This disclosure has been superseded by a March, 2012 version.
From time to time, I disclose our vendor client lists. Another iteration is below. To be clear:
- This is a list of Monash Advantage members.
- All our vendor clients are Monash Advantage members, unless …
- … we work with them primarily in their capacity as technology users. (A large fraction of our user clients happen to be SaaS vendors.)
- We do not usually disclose our user clients.
- We do not usually disclose our venture capital clients, nor those who invest in publicly-traded securities.
- Included in the list below are two expired Monash Advantage members who haven’t said they will renew, as mentioned in my recent post on analyst bias. (You can probably imagine a couple of reasons for that obfuscation.)
With that said, our vendor client disclosures at this time are:
- Aster Data
- Cloudera
- CodeFutures/dbShards
- Couchbase
- EMC/Greenplum
- Endeca
- IBM/Netezza
- Infobright
- Intel
- MarkLogic
- ParAccel
- QlikTech
- salesforce.com/database.com
- SAND Technology
- SAP/Sybase
- Schooner Information Technology
- Skytide
- Splunk
- Teradata
- Vertica
Comments on the Gartner 2010/2011 Data Warehouse Database Management Systems Magic Quadrant
Edit: Comments on the February, 2012 Gartner Magic Quadrant for Data Warehouse Database Management Systems — and on the companies reviewed in it — are now up.
The Gartner 2010 Data Warehouse Database Management Systems Magic Quadrant is out. I shall now comment, just as I did to varying degrees on the 2009, 2008, 2007, and 2006 Gartner Data Warehouse Database Management System Magic Quadrants.
Note: Links to Gartner Magic Quadrants tend to be unstable. Please alert me if any problems arise; I’ll edit accordingly.
In my comments on the 2008 Gartner Data Warehouse Database Management Systems Magic Quadrant, I observed that Gartner’s “completeness of vision” scores were generally pretty reasonable, but their “ability to execute” rankings were somewhat bizarre; the same remains true this year. For example, Gartner ranks Ingres higher by that metric than Vertica, Aster Data, ParAccel, or Infobright. Yet each of those companies is growing nicely and delivering products that meet serious cutting-edge analytic DBMS needs, neither of which has been true of Ingres since about 1987. Read more