DataStax

Discussion of DataStax — formerly known as Riptano — a company founded to commercialize Cassandra.

August 7, 2016

Notes on DataStax and Cassandra

I visited DataStax on my recent trip. That was a tipping point leading to my recent discussions of NoSQL DBAs and misplaced fear of vendor lock-in. But of course I also learned some things about DataStax and Cassandra themselves.

On the customer side:

Customers in large numbers want cloud capabilities, as a potential future if not a current need.

One customer example was a large retailer, who in the past was awful at providing accurate inventory information online, but now uses Cassandra for that. DataStax brags that its queries come back in 20 milliseconds, but that strikes me as a bit beside the point; what really matters is that data accuracy has gone from “batch” to some version of real-time. Also, Microsoft is a DataStax customer, using Cassandra (and Spark) for the Office 365 backend, or at least for the associated analytics.

Per Patrick McFadin, the four biggest things in DataStax Enterprise 5 are: Read more

July 19, 2016

Notes from a long trip, July 19, 2016

For starters:

A running list of recent posts is:

Subjects I’d like to add to that list include:

Read more

October 15, 2015

Cassandra and privacy requirements

For starters:

But when I made that connection and checked in accordingly with my client Patrick McFadin at DataStax, I discovered that I’d been a little confused about how multi-data-center Cassandra works. The basic idea holds water, but the details are not quite what I was envisioning.

The story starts:

In particular, a remote replication factor for Cassandra can = 0. When that happens, then you have data sitting in one geographical location that is absent from another geographical location; i.e., you can be in compliance with laws forbidding the export of certain data. To be clear (and this contradicts what I previously believed and hence also implied in this blog):

Read more

October 15, 2015

Basho and Riak

Basho was on my (very short) blacklist of companies with whom I refuse to speak, because they have lied about the contents of previous conversations. But Tony Falco et al. are long gone from the company. So when Basho’s new management team reached out, I took the meeting.

For starters:

Basho’s product line has gotten a bit confusing, but as best I understand things the story is:

Technical notes on some of that include:  Read more

October 11, 2015

Notes on privacy and surveillance, October 11, 2015

1. European Union data sovereignty laws have long had a “Safe Harbour” rule stating it was OK to ship data to the US. Per the case Maximilian Schrems v Data Protection Commissioner, this rule is now held to be invalid. Angst has ensued, and rightly so.

The core technical issues are roughly:

Facebook’s estimate of billions of dollars in added costs is not easy to refute.

My next set of technical thoughts starts: Read more

September 14, 2015

DataStax and Cassandra update

MongoDB isn’t the only company I reached out to recently for an update. Another is DataStax. I chatted mainly with Patrick McFadin, somebody with whom I’ve had strong consulting relationships at a user and vendor both. But Rachel Pedreschi contributed the marvelous phrase “twinkling dashboard”.

It seems fair to say that in most cases:

Those generalities, in my opinion, make good technical sense. Even so, there are some edge cases or counterexamples, such as:

*And so a gas company is doing lightweight analysis on boiler temperatures, which it regards as hot data. 🙂

While most of the specifics are different, I’d say similar things about MongoDB, Cassandra, or any other NoSQL DBMS that comes to mind: Read more

May 2, 2015

Notes, links and comments, May 2, 2015

I’m going to be out-of-sorts this week, due to a colonoscopy. (Between the prep, the procedure, and the recovery, that’s a multi-day disablement.) In the interim, here’s a collection of links, quick comments and the like.

1. Are you an engineer considering a start-up? This post is for you. It’s based on my long experience in and around such scenarios, and includes a section on “Deadly yet common mistakes”.

2. There seems to be a lot of confusion regarding the business model at my clients Databricks. Indeed, my own understanding of Databricks’ on-premises business has changed recently. There are no changes in my beliefs that:

However, I now get the impression that revenue from such relationships is a bigger deal to Databricks than I previously thought.

Databricks, by the way, has grown to >50 people.

3. DJ Patil and Ruslan Belkin apparently had a great session on lessons learned, covering a lot of ground. Many of the points are worth reading, but one in particular echoed something I’m hearing lots of places — “Data is super messy, and data cleanup will always be literally 80% of the work.” Actually, I’d replace the “always” by something like “very often”, and even that mainly for newish warehouses, data marts or datasets. But directionally the comment makes a whole lot of sense.

Read more

January 19, 2015

Where the innovation is

I hoped to write a reasonable overview of current- to medium-term future IT innovation. Yeah, right. 🙂 But if we abandon any hope that this post could be comprehensive, I can at least say:

1. Back in 2011, I ranted against the term Big Data, but expressed more fondness for the V words — Volume, Velocity, Variety and Variability. That said, when it comes to data management and movement, solutions to the V problems have generally been sketched out.

2. Even so, there’s much room for innovation around data movement and management. I’d start with:

3. As I suggested last year, data transformation is an important area for innovation.  Read more

May 6, 2014

Notes and comments, May 6, 2014

After visiting California recently, I made a flurry of posts, several of which generated considerable discussion.

Here is a catch-all post to complete the set.  Read more

March 17, 2014

Notes and comments, March 17, 2014

I have ever more business-advice posts up on Strategic Messaging. Recent subjects include pricing and stealth-mode marketing. Other stuff I’ve been up to includes:

The Spark buzz keeps increasing; almost everybody I talk with expects Spark to win big, probably across several use cases.

Disclosure: I’ll soon be in a substantial client relationship with Databricks, hoping to improve their stealth-mode marketing. 😀

The “real-time analytics” gold rush I called out last year continues. A large fraction of the vendors I talk with have some variant of “real-time analytics” as a central message.

Basho had a major change in leadership. A Twitter exchange ensued. 🙂 Joab Jackson offered a more sober — figuratively and literally — take.

Hadapt laid off its sales and marketing folks, and perhaps some engineers as well. In a nutshell, Hadapt’s approach to SQL-on-Hadoop wasn’t selling vs. the many alternatives, and Hadapt is doubling down on poly-structured data*/schema-on-need.

*While Hadapt doesn’t to my knowledge use the term “poly-structured data”, some other vendors do. And so I may start using it more myself, at least when the poly-structured/multi-structured distinction actually seems significant.

WibiData is partnering with DataStax, WibiData is of course pleased to get access to Cassandra’s user base, which gave me the opportunity to ask why they thought Cassandra had beaten HBase in those accounts. The answer was performance and availability, while Cassandra’s traditional lead in geo-distribution wasn’t mentioned at all.

Disclosure: My fingerprints are all over that deal.

In other news, WibiData has had some executive departures as well, but seems to be staying the course on its strategy. I continue to think that WibiData has a really interesting vision about how to do large-data-volume interactive computing, and anybody in that space would do well to talk with them or at least look into the open source projects WibiData sponsors.

I encountered another apparently-popular machine-learning term — bandit model. It seems to be glorified A/B testing, and it seems to be popular. I think the point is that it tries to optimize for just how much you invest in testing unproven (for good or bad) alternatives.

I had an awkward set of interactions with Gooddata, including my longest conversations with them since 2009. Gooddata is in the early days of trying to offer an all-things-to-all-people analytic stack via SaaS (Software as a Service). I gather that Hadoop, Vertica, PostgreSQL (a cheaper Vertica alternative), Spark, Shark (as a faster version of Hive) and Cassandra (under the covers) are all in the mix — but please don’t hold me to those details.

I continue to think that computing is moving to a combination of appliances, clusters, and clouds. That said, I recently bought a new gaming-class computer, and spent many hours gaming on it just yesterday.* I.e., there’s room for general-purpose workstations as well. But otherwise, I’m not hearing anything that contradicts my core point.

*The last beta weekend for The Elder Scrolls Online; I loved Morrowind.

Next Page →

Feed: DBMS (database management system), DW (data warehousing), BI (business intelligence), and analytics technology Subscribe to the Monash Research feed via RSS or email:

Login

Search our blogs and white papers

Monash Research blogs

User consulting

Building a short list? Refining your strategic plan? We can help.

Vendor advisory

We tell vendors what's happening -- and, more important, what they should do about it.

Monash Research highlights

Learn about white papers, webcasts, and blog highlights, by RSS or email.