MicroStrategy

Analysis and discussion of MicroStrategy and its business intelligence product line.

January 14, 2016

BI and quasi-DBMS

I’m on two overlapping posting kicks, namely “lessons from the past” and “stuff I keep saying so might as well also write down”. My recent piece on Oracle as the new IBM is an example of both themes. In this post, another example, I’d like to memorialize some points I keep making about business intelligence and other analytics. In particular:

Similarly, BI has often been tied to data integration/ETL (Extract/Transform/Load) functionality.* But I won’t address that subject further at this time.

*In the Hadoop/Spark era, that’s even truer of other analytics than it is of BI.

My top historical examples include:

Read more

April 17, 2014

MongoDB is growing up

I caught up with my clients at MongoDB to discuss the recent MongoDB 2.6, along with some new statements of direction. The biggest takeaway is that the MongoDB product, along with the associated MMS (MongoDB Management Service), is growing up. Aspects include:

Read more

August 6, 2013

Hortonworks, Hadoop, Stinger and Hive

I chatted yesterday with the Hortonworks gang. The main subject was Hortonworks’ approach to SQL-on-Hadoop — commonly called Stinger —  but at my request we cycled through a bunch of other topics as well. Company-specific notes include:

Our deployment and use case discussions were a little confused, because a key part of Hortonworks’ strategy is to support and encourage the idea of combining use cases and workloads on a single cluster. But I did hear:

*By the way — Teradata seems serious about pushing the UDA as a core message.

Ecosystem notes, in Hortonworks’ perception, included:

I also asked specifically about OpenStack. Hortonworks is a member of the OpenStack project, contributes nontrivially to Swift and other subprojects, and sees Rackspace as an important partner. But despite all that, I think strong Hadoop/OpenStack integration is something for the indefinite future.

Hortonworks’ views about Hadoop 2.0 start from the premise that its goal is to support running a multitude of workloads on a single cluster. (See, for example, what I previously posted about Tez and YARN.) Timing notes for Hadoop 2.0 include:

Frankly, I think Cloudera’s earlier and necessarily incremental Hadoop 2 rollout was a better choice than Hortonworks’ later big bang, even though the core-mission aspect of Hadoop 2.0 is what was least ready. HDFS (Hadoop Distributed File System) performance, NameNode failover and so on were well worth having, and it’s more than a year between Cloudera starting supporting them and when Hortonworks is offering Hadoop 2.0.

Hortonworks’ approach to doing SQL-on-Hadoop can be summarized simply as “Make Hive into as good an analytic RDBMS as possible, all in open source”. Key elements include:  Read more

February 5, 2013

Comments on Gartner’s 2012 Magic Quadrant for Data Warehouse Database Management Systems — evaluations

To my taste, the most glaring mis-rankings in the 2012/2013 Gartner Magic Quadrant for Data Warehouse Database Management are that it is too positive on Kognitio and too negative on Infobright. Secondarily, it is too negative on HP Vertica, and too positive on ParAccel and Actian/VectorWise. So let’s consider those vendors first.

Gartner seems confused about Kognitio’s products and history alike.

Gartner is correct, however, to note that Kognitio doesn’t sell much stuff overall.

* non-existent

In the cases of HP Vertica, Infobright, ParAccel, and Actian/VectorWise, the 2012 Gartner Magic Quadrant for Data Warehouse Database Management’s facts are fairly accurate, but I dispute Gartner’s evaluation. When it comes to Vertica: Read more

February 21, 2012

The 2011/2012 Gartner Magic Quadrant for Business Intelligence Platforms — company-by-company comments

This is one of a series of posts on business intelligence and related analytic technology subjects, keying off the 2011/2012 version of the Gartner Magic Quadrant for Business Intelligence Platforms. The four posts in the series cover:

The heart of Gartner Group’s 2011/2012 Magic Quadrant for Business Intelligence Platforms was the company comments. I shall expound upon some, roughly in declining order of Gartner’s “Completeness of Vision” scores, dubious though those rankings may be.  Read more

February 21, 2012

Business intelligence industry trends

This is one of a series of posts on business intelligence and related analytic technology subjects, keying off the 2011/2012 version of the Gartner Magic Quadrant for Business Intelligence Platforms. The four posts in the series cover:

Besides company-specific comments, the 2011/2012 Gartner Magic Quadrant for Business Intelligence (BI) Platforms offered observations on overall BI trends in a “Market Overview” section. I have mixed feelings about Gartner’s list. In particular:

Here’s the forest that I suspect Gartner is missing for the trees:

Read more

August 12, 2010

Teradata’s future product strategy

I think Teradata’s future product strategy is coming into focus. I’ll start by outlining some particular aspects, and then show how I think it all ties together.
Read more

July 29, 2010

Microstrategy technology notes

Earlier this week, Microstrategy made Mark LaRow available to talk about technology. The proximate reason was my recent mention of Microstrategy’s mobile BI emphasis, but we also touched on Microstrategy’s approach to in-memory business intelligence and some other subjects. We didn’t go into the depth of a similar conversation I had recently with Qlik Technologies, but I found it quite interesting even so.

Highlights of the in-memory BI discussion included:

Another key subject we discussed was Microstrategy’s view of dashboards. Read more

July 29, 2010

How should somebody teach themselves database and programming skills?

From time to time,  I get in a conversation with somebody who is:

I generally have two models in mind when guiding such a person:

Those are both useful skill sets for people who aren’t full-time techies, the first perhaps best for those who are more quantitative and big-company-friendly, the second perhaps better for the creative and/or rebellious types.

So what SPECIFICALLY should one guide them to do? My initial thoughts include: Read more

July 25, 2010

False-positive alerts, non-collaborative BI, inaccurate metrics, and what to do about them

I’ve been hinting at some points for quite a long time, without really spelling them out in written form. So let’s fix that. I believe:

I shall explain.  Read more

Next Page →

Feed: DBMS (database management system), DW (data warehousing), BI (business intelligence), and analytics technology Subscribe to the Monash Research feed via RSS or email:

Login

Search our blogs and white papers

Monash Research blogs

User consulting

Building a short list? Refining your strategic plan? We can help.

Vendor advisory

We tell vendors what's happening -- and, more important, what they should do about it.

Monash Research highlights

Learn about white papers, webcasts, and blog highlights, by RSS or email.