IBM and DB2

Analysis of IBM and various of its product lines in database management, analytics, and data integration.

July 20, 2014

Data integration as a business opportunity

A significant fraction of IT professional services industry revenue comes from data integration. But as a software business, data integration has been more problematic. Informatica, the largest independent data integration software vendor, does $1 billion in revenue. INFA’s enterprise value (market capitalization after adjusting for cash and debt) is $3 billion, which puts it way short of other category leaders such as VMware, and even sits behind Tableau.* When I talk with data integration startups, I ask questions such as “What fraction of Informatica’s revenue are you shooting for?” and, as a follow-up, “Why would that be grounds for excitement?”

*If you believe that Splunk is a data integration company, that changes these observations only a little.

On the other hand, several successful software categories have, at particular points in their history, been focused on data integration. One of the major benefits of 1990s business intelligence was “Combines data from multiple sources on the same screen” and, in some cases, even “Joins data from multiple sources in a single view”. The last few years before application servers were commoditized, data integration was one of their chief benefits. Data warehousing and Hadoop both of course have a “collect all your data in one place” part to their stories — which I call data mustering — and Hadoop is a data transformation tool as well.

Read more

July 14, 2014

21st Century DBMS success and failure

As part of my series on the keys to and likelihood of success, I outlined some examples from the DBMS industry. The list turned out too long for a single post, so I split it up by millennia. The part on 20th Century DBMS success and failure went up Friday; in this one I’ll cover more recent events, organized in line with the original overview post. Categories addressed will include analytic RDBMS (including data warehouse appliances), NoSQL/non-SQL short-request DBMS, MySQL, PostgreSQL, NewSQL and Hadoop.

DBMS rarely have trouble with the criterion “Is there an identifiable buying process?” If an enterprise is doing application development projects, a DBMS is generally chosen for each one. And so the organization will generally have a process in place for buying DBMS, or accepting them for free. Central IT, departments, and — at least in the case of free open source stuff — developers all commonly have the capacity for DBMS acquisition.

In particular, at many enterprises either departments have the ability to buy their own analytic technology, or else IT will willingly buy and administer things for a single department. This dynamic fueled much of the early rise of analytic RDBMS.

Buyer inertia is a greater concern.

A particularly complex version of this dynamic has played out in the market for analytic RDBMS/appliances.

Otherwise I’d say:  Read more

February 1, 2014

More on public policy

Occasionally I take my public policy experience out for some exercise. Last week I wrote about privacy and network neutrality. In this post I’ll survey a few more subjects.

1. Censorship worries me, a lot. A classic example is Vietnam, which basically has outlawed online political discussion.

And such laws can have teeth. It’s hard to conceal your internet usage from an inquisitive government.

2. Software and software related patents are back in the news. Google, which said it was paying $5.5 billion or so for a bunch of Motorola patents, turns out to really have paid $7 billion or more. Twitter and IBM did a patent deal as well. Big numbers, and good for certain shareholders. But this all benefits the wider world — how?

As I wrote 3 1/2 years ago:

The purpose of legal intellectual property protections, simply put, is to help make it a good decision to create something.

Why does “securing … exclusive Right[s]” to the creators of things that are patented, copyrighted, or trademarked help make it a good decision for them to create stuff? Because it averts competition from copiers, thus making the creator a monopolist in what s/he has created, allowing her to at least somewhat value-price her creation.

I.e., the core point of intellectual property rights is to prevent copying-based competition. By way of contrast, any other kind of intellectual property “right” should be viewed with great suspicion.

That Constitutionally-based principle makes as much sense to me now as it did then. By way of contrast, “Let’s give more intellectual property rights to big corporations to protect middle-managers’ jobs” is — well, it’s an argument I view with great suspicion.

But I find it extremely hard to think of a technology industry example in which development was stimulated by the possibility of patent protection. Yes, the situation may be different in pharmaceuticals, or for gadgeteering home inventors, but I can think of no case in which technology has been better, or faster to come to market, because of the possibility of a patent-law monopoly. So if software and business-method patents were abolished entirely — even the ones that I think could be realistically adjudicatedI’d be pleased.

3. In November, 2008 I offered IT policy suggestions for the incoming Obama Administration, especially:  Read more

January 9, 2014

The games of Watson

IBM excels at game technology, most famously in Deep Blue (chess) and Watson (Jeopardy!). But except at the chip level — PowerPC — IBM hasn’t accomplished much at game/real world crossover. And so I suspect the Watson hype is far overblown.

I believe that for two main reasons. First, whenever IBM talks about big initiatives like Watson, it winds up bundling a bunch of dissimilar things together and claiming they’re a seamless whole. Second, some core Watson claims are eerily similar to artificial intelligence (AI) over-hype three or more decades past. For example, the leukemia treatment advisor that is being hopefully built in Watson now sounds a lot like MYCIN from the early 1970s, and the idea of collecting a lot of tidbits of information sounds a lot like the Cyc project. And by the way:

Read more

November 10, 2013

RDBMS and their bundle-mates

Relational DBMS used to be fairly straightforward product suites, which boiled down to:

Now, however, most RDBMS are sold as part of something bigger.

Read more

November 8, 2013

Comments on the 2013 Gartner Magic Quadrant for Operational Database Management Systems

The 2013 Gartner Magic Quadrant for Operational Database Management Systems is out. “Operational” seems to be Gartner’s term for what I call short-request, in each case the point being that OLTP (OnLine Transaction Processing) is a dubious term when systems omit strict consistency, and when even strictly consistent systems may lack full transactional semantics. As is usually the case with Gartner Magic Quadrants:

Anyhow:  Read more

September 24, 2013

JSON in DB2

There’s a growing trend for DBMS to beef up their support for multiple data manipulation languages (DMLs) or APIs — and there’s a special boom in JSON support, MongoDB-compatible or otherwise. So I talked earlier tonight with IBM’s Bobbie Cochrane about how JSON is managed in DB2.

For starters, let’s note that there are at least four strategies IBM could have used.

IBM’s technology choices are of course influenced by its use case focus. It’s reasonable to divide MongoDB use cases into two large buckets:

IBM’s DB2 JSON features are targeted at the latter bucket. Also, I suspect that IBM is generally looking for a way to please users who enjoy working on and with their MongoDB skills.  Read more

September 23, 2013

Thoughts on in-memory columnar add-ons

Oracle announced its in-memory columnar option Sunday. As usual, I wasn’t briefed; still, I have some observations. For starters:

I’d also add that Larry Ellison’s pitch “build columns to avoid all that index messiness” sounds like 80% bunk. The physical overhead should be at least as bad, and the main saving in administrative overhead should be that, in effect, you’re indexing ALL columns rather than picking and choosing.

Anyhow, this technology should be viewed as applying to traditional business transaction data, much more than to — for example — web interaction logs, or other machine-generated data. My thoughts around that distinction start:

Read more

August 25, 2013

Cloudera Sentry and other security subjects

I chatted with Charles Zedlewski of Cloudera on Thursday about security — especially Cloudera’s new offering Sentry — and other Hadoop subjects.

Sentry is:

Apparently, Hadoop security options pre-Sentry boil down to:

Sentry adds role-based permissions for SQL access to Hadoop:

for a variety of actions — selections, transformations, schema changes, etc. Sentry does this by examining a query plan and checking whether each step in the plan is permissible.  Read more

August 6, 2013

Hortonworks, Hadoop, Stinger and Hive

I chatted yesterday with the Hortonworks gang. The main subject was Hortonworks’ approach to SQL-on-Hadoop — commonly called Stinger —  but at my request we cycled through a bunch of other topics as well. Company-specific notes include:

Our deployment and use case discussions were a little confused, because a key part of Hortonworks’ strategy is to support and encourage the idea of combining use cases and workloads on a single cluster. But I did hear:

*By the way — Teradata seems serious about pushing the UDA as a core message.

Ecosystem notes, in Hortonworks’ perception, included:

I also asked specifically about OpenStack. Hortonworks is a member of the OpenStack project, contributes nontrivially to Swift and other subprojects, and sees Rackspace as an important partner. But despite all that, I think strong Hadoop/OpenStack integration is something for the indefinite future.

Hortonworks’ views about Hadoop 2.0 start from the premise that its goal is to support running a multitude of workloads on a single cluster. (See, for example, what I previously posted about Tez and YARN.) Timing notes for Hadoop 2.0 include:

Frankly, I think Cloudera’s earlier and necessarily incremental Hadoop 2 rollout was a better choice than Hortonworks’ later big bang, even though the core-mission aspect of Hadoop 2.0 is what was least ready. HDFS (Hadoop Distributed File System) performance, NameNode failover and so on were well worth having, and it’s more than a year between Cloudera starting supporting them and when Hortonworks is offering Hadoop 2.0.

Hortonworks’ approach to doing SQL-on-Hadoop can be summarized simply as “Make Hive into as good an analytic RDBMS as possible, all in open source”. Key elements include:  Read more

← Previous PageNext Page →

Feed: DBMS (database management system), DW (data warehousing), BI (business intelligence), and analytics technology Subscribe to the Monash Research feed via RSS or email:

Login

Search our blogs and white papers

Monash Research blogs

User consulting

Building a short list? Refining your strategic plan? We can help.

Vendor advisory

We tell vendors what's happening -- and, more important, what they should do about it.

Monash Research highlights

Learn about white papers, webcasts, and blog highlights, by RSS or email.