IBM and DB2
Analysis of IBM and various of its product lines in database management, analytics, and data integration.
- Cognos
- solidDB
- (in The Monash Report) Operational and strategic issues for IBM
- (in Text Technologies) IBM in the text analytics market
- (in Software Memories) Historical notes on IBM
- (in Software Memories) Historical notes on Informix
Are analytic RDBMS and data warehouse appliances obsolete?
I used to spend most of my time — blogging and consulting alike — on data warehouse appliances and analytic DBMS. Now I’m barely involved with them. The most obvious reason is that there have been drastic changes in industry structure:
- Many of the independent vendors were swooped up by acquisition.
- None of those acquisitions was a big success.
- Microsoft did little with DATAllegro.
- Netezza struggled with R&D after being bought by IBM. An IBMer recently told me that their main analytic RDBMS engine was BLU.
- I hear about Vertica more as a technology to be replaced than as a significant ongoing market player.
- Pivotal open-sourced Greenplum. I have detected few people who care.
- Ditto for Actian’s offerings.
- Teradata claimed a few large Aster accounts, but I never hear of Aster as something to compete or partner with.
- Smaller vendors fizzled too. Hadapt and Kickfire went to Teradata as more-or-less acquihires. InfiniDB folded. Etc.
- Impala and other Hadoop-based alternatives are technology options.
- Oracle, Microsoft, IBM and to some extent SAP/Sybase are still pedaling along … but I rarely talk with companies that big. 🙂
Simply reciting all that, however, begs the question of whether one should still care about analytic RDBMS at all.
My answer, in a nutshell, is:
Analytic RDBMS — whether on premises in software, in the form of data warehouse appliances, or in the cloud — are still great for hard-core business intelligence, where “hard-core” can refer to ad-hoc query complexity, reporting/dashboard concurrency, or both. But they aren’t good for much else.
Notes on vendor lock-in
Vendor lock-in is an important subject. Everybody knows that. But few of us realize just how complicated the subject is, nor how riddled it is with paradoxes. Truth be told, I wasn’t fully aware either. But when I set out to write this post, I found that it just kept growing longer.
1. The most basic form of lock-in is:
- You do application development for a target set of platform technologies.
- Your applications can’t run without those platforms underneath.
- Hence, you’re locked into those platforms.
2. Enterprise vendor standardization is closely associated with lock-in. The core idea is that you have a mandate or strong bias toward having different apps run over the same platforms, because:
- That simplifies your environment, requiring less integration and interoperability.
- That simplifies your staffing; the same skill sets apply to multiple needs and projects.
- That simplifies your vendor support relationships; there’s “one throat to choke”.
- That simplifies your price negotiation.
3. That last point is double-edged; you have more power over suppliers to whom you give more business, but they also have more power over you. The upshot is often an ELA (Enterprise License Agreement), which commonly works:
- For a fixed period of time, the enterprise may use as much of a given product set as they want, with costs fixed in advance.
- A few years later, the price is renegotiated, based on then-current levels of usage.
Categories: Amazon and its cloud, Buying processes, Cassandra, Exadata, Facebook, IBM and DB2, Microsoft and SQL*Server, MongoDB, Neo Technology and Neo4j, Open source, Oracle, SAP AG | 12 Comments |
Oracle as the new IBM — has a long decline started?
When I find myself making the same observation fairly frequently, that’s a good impetus to write a post based on it. And so this post is based on the thought that there are many analogies between:
- Oracle and the Oracle DBMS.
- IBM and the IBM mainframe.
And when you look at things that way, Oracle seems to be swimming against the tide.
Drilling down, there are basically three things that can seriously threaten Oracle’s market position:
- Growth in apps of the sort for which Oracle’s RDBMS is not well-suited. Much of “Big Data” fits that description.
- Outright, widespread replacement of Oracle’s application suites. This is the least of Oracle’s concerns at the moment, but could of course be a disaster in the long term.
- Transition to “the cloud”. This trend amplifies the other two.
Oracle’s decline, if any, will be slow — but I think it has begun.
Oracle/IBM analogies
There’s a clear market lead in the core product category. IBM was dominant in mainframe computing. While not as dominant, Oracle is definitely a strong leader in high-end OTLP/mixed-use (OnLine Transaction Processing) RDBMS.
That market lead is even greater than it looks, because some of the strongest competitors deserve asterisks. Many of IBM’s mainframe competitors were “national champions” — Fujitsu and Hitachi in Japan, Bull in France and so on. Those were probably stronger competitors to IBM than the classic BUNCH companies (Burroughs, Univac, NCR, Control Data, Honeywell).
Similarly, Oracle’s strongest direct competitors are IBM DB2 and Microsoft SQL Server, each of which is sold primarily to customers loyal to the respective vendors’ full stacks. SAP is now trying to play a similar game.
The core product is stable, secure, richly featured, and generally very mature. Duh.
The core product is complicated to administer — which provides great job security for administrators. IBM had JCL (Job Control Language). Oracle has a whole lot of manual work overseeing indexes. In each case, there are many further examples of the point. Edit: A Twitter discussion suggests the specific issue with indexes has been long fixed.
Niche products can actually be more reliable than the big, super-complicated leader. Tandem Nonstop computers were super-reliable. Simple, “embeddable” RDBMS — e.g. Progress or SQL Anywhere — in many cases just work. Still, if you want one system to run most of your workload 24×7, it’s natural to choose the category leader. Read more
Categories: Cloud computing, Database diversity, Exadata, IBM and DB2, Market share and customer counts, Microsoft and SQL*Server, NoSQL, Oracle, Software as a Service (SaaS) | 28 Comments |
Transitioning to the cloud(s)
There’s a lot of talk these days about transitioning to the cloud, by IT customers and vendors alike. Of course, I have thoughts on the subject, some of which are below.
1. The economies of scale of not running your own data centers are real. That’s the kind of non-core activity almost all enterprises should outsource. Of course, those considerations taken alone argue equally for true cloud, co-location or SaaS (Software as a Service).
2. When the (Amazon) cloud was newer, I used to hear that certain kinds of workloads didn’t map well to the architecture Amazon had chosen. In particular, shared-nothing analytic query processing was necessarily inefficient. But I’m not hearing nearly as much about that any more.
3. Notwithstanding the foregoing, not everybody loves Amazon pricing.
4. Infrastructure vendors such as Oracle would like to also offer their infrastructure to you in the cloud. As per the above, that could work. However:
- Is all your computing on Oracle’s infrastructure? Probably not.
- Do you want to move the Oracle part and the non-Oracle part to different clouds? Ideally, no.
- Do you like the idea of being even more locked in to Oracle than you are now? [Insert BDSM joke here.]
- Will Oracle do so much better of a job hosting its own infrastructure that you use its cloud anyway? Well, that’s an interesting question.
Actually, if we replace “Oracle” by “Microsoft”, the whole idea sounds better. While Microsoft doesn’t have a proprietary server hardware story like Oracle’s, many folks are content in the Microsoft walled garden. IBM has fiercely loyal customers as well, and so may a couple of Japanese computer manufacturers.
5. Even when running stuff in the cloud is otherwise a bad idea, there’s still: Read more
Categories: Amazon and its cloud, Cloud computing, Emulation, transparency, portability, IBM and DB2, Microsoft and SQL*Server, Oracle, Pricing | 6 Comments |
Machine learning’s connection to (the rest of) AI
This is part of a four post series spanning two blogs.
- One post gives a general historical overview of the artificial intelligence business.
- One post specifically covers the history of expert systems.
- One post gives a general present-day overview of the artificial intelligence business.
- One post (this one) explores the close connection between machine learning and (the rest of) AI.
1. I think the technical essence of AI is usually:
- Inputs come in.
- Decisions or actions come out.
- More precisely — inputs come in, something intermediate is calculated, and the intermediate result is mapped to a decision or action.
- The intermediate results are commonly either numerical (a scalar or perhaps a vector of scalars) or a classification/partition into finitely many possible intermediate outputs.
Of course, a lot of non-AI software can be described the same way.
To check my claim, please consider:
- It fits rules engines/expert systems so simply it’s barely worth saying.
- It fits any kind of natural language processing; the intermediate results might be words or phrases or concepts or whatever.
- It fits machine vision beautifully.
To see why it’s true from a bottom-up standpoint, please consider the next two points.
2. It is my opinion that most things called “intelligence” — natural and artificial alike — have a great deal to do with pattern recognition and response. Examples of what I mean include: Read more
Categories: Facebook, Google, IBM and DB2, Microsoft and SQL*Server, Predictive modeling and advanced analytics | 6 Comments |
What is AI, and who has it?
This is part of a four post series spanning two blogs.
- One post gives a general historical overview of the artificial intelligence business.
- One post specifically covers the history of expert systems.
- One post (this one) gives a general present-day overview of the artificial intelligence business.
- One post explores the close connection between machine learning and (the rest of) AI.
1. “Artificial intelligence” is a term that usually means one or more of:
- “Smart things that computers can’t do yet.”
- “Smart things that computers couldn’t do until recently.”
- “Technology that has emerged from the work of computer scientists who said they were doing AI.”
- “Underpinnings for other things that might be called AI.”
But that covers a lot of ground, especially since reasonable people might disagree as to what constitutes “smart”.
2. Examples of what has been called “AI” include:
- Rule-based processing, especially if it is referred to as “expert systems”.
- Machine learning.
- Many aspects of “natural language processing” — a term almost as overloaded as “artificial intelligence” — including but not limited to:
- Text search.
- Speech recognition, especially but not only if it seems somewhat lifelike.
- Automated language translation.
- Natural language database query.
- Machine vision.
- Autonomous vehicles.
- Robots, especially but not only ones that seem somewhat lifelike.
- Automated theorem proving.
- Playing chess at an ELO rating of 1600 or better.
- Beating the world champion at chess.
- Beating the world champion at Jeopardy.
- Anything that IBM brands or rebrands as “Watson”.
Categories: IBM and DB2, Text | 5 Comments |
MariaDB and MaxScale
I chatted with the MariaDB folks on Tuesday. Let me start by noting:
- MariaDB, the product, is a MySQL fork.
- MariaDB, product and company alike, are essentially a reaction to Oracle’s acquisition of MySQL. A lot of the key players are previously from MySQL.
- MariaDB, the company, is the former SkySQL …
- … which acquired or is the surviving entity of a merger with The Monty Program, which originated MariaDB. According to Wikipedia, something called the MariaDB Foundation is also in the mix.
- I get the impression SkySQL mainly provided services around MySQL, especially remote DBA.
- It appears that a lot of MariaDB’s technical differentiation going forward is planned to be in a companion product called MaxScale, which was released into Version 1.0 general availability earlier this year.
The numbers around MariaDB are a little vague. I was given the figure that there were ~500 customers total, but I couldn’t figure out what they were customers for. Remote DBA services? MariaDB support subscriptions? Something else? I presume there are some customers in each category, but I don’t know the mix. Other notes on MariaDB the company are:
- ~80 people in ~15 countries.
- 20-25 engineers, which hopefully doesn’t count a few field support people.
- “Tiny” headquarters in Helsinki.
- Business leadership growing in the US and especially the SF area.
MariaDB, the company, also has an OEM business. Part of their pitch is licensing for connectors — specifically LGPL — that hopefully gets around some of the legal headaches for MySQL engine suppliers.
MaxScale is a proxy, which starts out by intercepting and parsing MariaDB queries. Read more
Categories: Database compression, Hadoop, IBM and DB2, Market share and customer counts, Mid-range, MySQL, Open source, Tokutek and TokuDB, Transparent sharding | 1 Comment |
Hadoop: And then there were three
Hortonworks, IBM, EMC Pivotal and others have announced a project called “Open Data Platform” to do … well, I’m not exactly sure what. Mainly, it sounds like:
- An attempt to minimize the importance of any technical advantages Cloudera or MapR might have.
- A face-saving way to admit that IBM’s and Pivotal’s insistence on having their own Hadoop distributions has been silly.
- An excuse for press releases.
- A source of an extra logo graphic to put on marketing slides.
Edit: Now there’s a press report saying explicitly that Hortonworks is taking over Pivotal’s Hadoop distro customers (which basically would mean taking over the support contracts and then working to migrate them to Hortonworks’ distro).
The claim is being made that this announcement solves some kind of problem about developing to multiple versions of the Hadoop platform, but to my knowledge that’s a problem rarely encountered in real life. When you already have a multi-enterprise open source community agreeing on APIs (Application Programming interfaces), what API inconsistency remains for a vendor consortium to painstakingly resolve?
Anyhow, it now seems clear that if you want to use a Hadoop distribution, there are three main choices:
- Cloudera’s flavor, whether as software (from Cloudera) or in an appliance (e.g. from Oracle).
- MapR’s flavor, as software from MapR.
- Hortonworks’ flavor, from a number of vendors, including Hortonworks, IBM, Pivotal, Teradata et al.
In saying that, I’m glossing over a few points, such as: Read more
Categories: Amazon and its cloud, Cloudera, EMC, Emulation, transparency, portability, Greenplum, Hadoop, Hortonworks, IBM and DB2, MapR, Open source | 11 Comments |
Thoughts and notes, Thanksgiving weekend 2014
I’m taking a few weeks defocused from work, as a kind of grandpaternity leave. That said, the venue for my Dances of Infant Calming is a small-but-nice apartment in San Francisco, so a certain amount of thinking about tech industries is inevitable. I even found time last Tuesday to meet or speak with my clients at WibiData, MemSQL, Cloudera, Citus Data, and MongoDB. And thus:
1. I’ve been sloppy in my terminology around “geo-distribution”, in that I don’t always make it easy to distinguish between:
- Storing different parts of a database in different geographies, often for reasons of data privacy regulatory compliance.
- Replicating an entire database into different geographies, often for reasons of latency and/or availability/ disaster recovery,
The latter case can be subdivided further depending on whether multiple copies of the data can accept first writes (aka active-active, multi-master, or multi-active), or whether there’s a clear single master for each part of the database.
What made me think of this was a phone call with MongoDB in which I learned that the limit on number of replicas had been raised from 12 to 50, to support the full-replication/latency-reduction use case.
2. Three years ago I posted about agile (predictive) analytics. One of the points was:
… if you change your offers, prices, ad placement, ad text, ad appearance, call center scripts, or anything else, you immediately gain new information that isn’t well-reflected in your previous models.
Subsequently I’ve been hearing more about predictive experimentation such as bandit testing. WibiData, whose views are influenced by a couple of Very Famous Department Store clients (one of which is Macy’s), thinks experimentation is quite important. And it could be argued that experimentation is one of the simplest and most direct ways to increase the value of your data.
3. I’d further say that a number of developments, trends or possibilities I’m seeing are or could be connected. These include agile and experimental predictive analytics in general, as noted in the previous point, along with: Read more
An idealized log management and analysis system — from whom?
I’ve talked with many companies recently that believe they are:
- Focused on building a great data management and analytic stack for log management …
- … unlike all the other companies that might be saying the same thing 🙂 …
- … and certainly unlike expensive, poorly-scalable Splunk …
- … and also unlike less-focused vendors of analytic RDBMS (which are also expensive) and/or Hadoop distributions.
At best, I think such competitive claims are overwrought. Still, it’s a genuinely important subject and opportunity, so let’s consider what a great log management and analysis system might look like.
Much of this discussion could apply to machine-generated data in general. But right now I think more players are doing product management with an explicit conception either of log management or event-series analytics, so for this post I’ll share that focus too.
A short answer might be “Splunk, but with more analytic functionality and more scalable performance, at lower cost, plus numerous coupons for free pizza.” A more constructive and bottoms-up approach might start with: Read more