Hadoop
Discussion of Hadoop. Related subjects include:
Confusion about metadata
A couple of points that arise frequently in conversation, but that I don’t seem to have made clearly online.
“Metadata” is generally defined as “data about data”. That’s basically correct, but it’s easy to forget how many different kinds of metadata there are. My list of metadata kinds starts with:
- Data about data structure. This is the classical sense of the term. But please note:
- In a relational database, structural metadata is rather separate from the data itself.
- In a document database, each document might carry structure information with it.
- Other inputs to core data management functions. Two major examples are:
- Column statistics that inform RDBMS optimizers.
- Value ranges that inform partition pruning or, more generally, data skipping.
- Inputs to ancillary data management functions — for example, security privileges.
- Support for human decisions about data — for example, information about authorship or lineage.
What’s worse, the past year’s most famous example of “metadata”, telephone call metadata, is misnamed. This so-called metadata, much loved by the NSA (National Security Agency), is just data, e.g. in the format of a CDR (Call Detail Record). Calling it metadata implies that it describes other data — the actual contents of the phone calls — that the NSA strenuously asserts don’t actually exist.
And finally, the first bullet point above has a counter-intuitive consequence — all common terminology notwithstanding, relational data is less structured than document data. Reasons include:
- Relational databases usually just hold strings — or maybe numbers — with structural information being held elsewhere.
- Some document databases store structural metadata right with the document data itself.
- Some document databases store data in the form of (name, value) pairs. In some cases additional structure is imposed by naming conventions.
- Actual text documents carry the structure imposed by grammar and syntax.
Related links
- A lengthy survey of metadata kinds, biased to Hadoop (August, 2012)
- Metadata as derived data (May, 2011)
- Dataset management (May, 2013)
- Structured/unstructured … multi-structured/poly-structured (May, 2011)
Categories: Data models and architecture, Hadoop, Structured documents, Surveillance and privacy, Telecommunications | 5 Comments |
Distinctions in SQL/Hadoop integration
Ever more products try to integrate SQL with Hadoop, and discussions of them seem confused, in line with Monash’s First Law of Commercial Semantics. So let’s draw some distinctions, starting with (and these overlap):
- Are the SQL engine and Hadoop:
- Necessarily on the same cluster?
- Necessarily or at least most naturally on different clusters?
- How, if at all, is Hadoop invoked by the SQL engine? Specifically, what is the role of:
- HDFS (Hadoop Distributed File System)?
- Hadoop MapReduce?
- HCatalog?
- How, if at all, is the SQL engine invoked by Hadoop?
In particular:
- If something is called a “connector”, then Hadoop and the SQL engine are most likely on separate clusters. Good features include (but these can partially contradict each other):
- A way of making data transfer maximally parallel.
- Query planning that is smart about when to process on the SQL engine and when to use Hadoop’s native SQL (Hive or otherwise).
- If something is called “SQL-on-Hadoop”, then Hadoop and the SQL engine are or should be on the same cluster, using the same nodes to store and process data. But while that’s a necessary condition, I’d prefer that it not be sufficient.
Let’s go to some examples. Read more
Some stuff I’m thinking about (early 2014)
From time to time I like to do “what I’m working on” posts. From my recent blogging, you probably already know that includes:
- Hadoop (always, and please see below).
- Analytic RDBMS (ditto).
- NoSQL and NewSQL.
- Specifically, SQL-on-Hadoop
- Schema-on-need.
- Spark and other memory-centric technology, including streaming.
- Public policy, mainly but not only in the area of surveillance/privacy.
- General strategic advice for all sizes of tech company.
Other stuff on my mind includes but is not limited to:
1. Certain categories of buying organizations are inherently leading-edge.
- Internet companies have adopted Hadoop, NoSQL, NewSQL and all that en masse. Often, they won’t even look at things that are conventional or expensive.
- US telecom companies have been buying 1 each of every DBMS on the market since pre-relational days.
- Financial services firms — specifically algorithmic traders and broker-dealers — have been in their own technical world for decades …
- … as have national-security agencies …
- … as have pharmaceutical research departments.
Fine. But what really intrigues me is when more ordinary enterprises also put leading-edge technologies into production. I pester everybody for examples of that.
Spark and Databricks
I’ve heard a lot of buzz recently around Spark. So I caught up with Ion Stoica and Mike Franklin for a call. Let me start by acknowledging some sources of confusion.
- Spark is very new. All Spark adoption is recent.
- Databricks was founded to commercialize Spark. It is very much in stealth mode …
- … except insofar as Databricks folks are going out and trying to drum up Spark adoption. 🙂
- Ion Stoica is running Databricks, but you couldn’t tell that from his UC Berkeley bio page. Edit: After I posted this, Ion’s bio was quickly updated. 🙂
- Spark creator and Databricks CTO Matei Zaharia is an MIT professor, but actually went on leave there before he ever showed up.
- Cloudera is perhaps Spark’s most visible supporter. But Cloudera’s views of Spark’s role in the world is different from the Spark team’s.
The “What is Spark?” question may soon be just as difficult as the ever-popular “What is Hadoop?” That said — and referring back to my original technical post about Spark and also to a discussion of prominent Spark user ClearStory — my try at “What is Spark?” goes something like this:
- Spark is a distributed execution engine for analytic processes …
- … which works well with Hadoop.
- Spark is distinguished by a flexible in-memory data model …
- … and farms out persistence to HDFS (Hadoop Distributed File System) or other existing data stores.
- Intended analytic use cases for Spark include:
- SQL data manipulation.
- ETL-like data manipulation.
- Streaming-like data manipulation.
- Machine learning.
- Graph analytics.
Notes on memory-centric data management
I first wrote about in-memory data management a decade ago. But I long declined to use that term — because there’s almost always a persistence story outside of RAM — and coined “memory-centric” as an alternative. Then I relented 1 1/2 years ago, and defined in-memory DBMS as
DBMS designed under the assumption that substantially all database operations will be performed in RAM (Random Access Memory)
By way of contrast:
Hybrid memory-centric DBMS is our term for a DBMS that has two modes:
- In-memory.
- Querying and updating (or loading into) persistent storage.
These definitions, while a bit rough, seem to fit most cases. One awkward exception is Aerospike, which assumes semiconductor memory, but is happy to persist onto flash (just not spinning disk). Another is Kognitio, which is definitely lying when it claims its product was in-memory all along, but may or may not have redesigned its technology over the decades to have become more purely in-memory. (But if they have, what happened to all the previous disk-based users??)
Two other sources of confusion are:
- The broad variety of memory-centric data management approaches.
- The over-enthusiastic marketing of SAP HANA.
With all that said, here’s a little update on in-memory data management and related subjects.
- I maintain my opinion that traditional databases will eventually wind up in RAM.
- At conventional large enterprises — as opposed to for example pure internet companies — production deployments of HANA are probably comparable in number and investment to production deployments of Hadoop. (I’m sorry, but much of my supporting information for that is confidential.)
- Cloudera is emphatically backing Spark. And a key aspect of Spark is that, unlike most of Hadoop, it’s memory-centric.
- It has become common for disk-based DBMS to persist data through a “log-structured” architecture. That’s a whole lot like what you do for persistence in a fundamentally in-memory system.
- I’m also sensing increasing comfort with the strategy of committing writes as soon as they’ve been acknowledged by two or more nodes in RAM.
And finally,
- I’ve never heard a story about an in-memory DBMS actually losing data. It’s surely happened, but evidently not often.
Vertica 7
It took me a bit of time, and an extra call with Vertica’s long-time R&D chief Shilpa Lawande, but I think I have a decent handle now on Vertica 7, code-named Crane. The two aspects of Vertica 7 I find most interesting are:
- Flex Zone, a schema-on-need technology very much like Hadapt’s (but of course with access to Vertica performance).
- What sounds like an alternate query execution capability for short-request queries, the big point of which is that it saves them from being broadcast across the whole cluster, hence improving scalability. (Adding nodes of course doesn’t buy you much for the portion of a workload that’s broadcast.)
Other Vertica 7 enhancements include:
- A lot of Bottleneck Whack-A-Mole.
- “Significant” improvements to the Vertica management console.
- Security enhancements (Kerberos), Hadoop integration enhancements (HCatalog), and enhanced integration with Hadoop security (Kerberos again).
- Some availability hardening. (“Fault groups”, which for example let you ensure that data is replicated not just to 2+ nodes, but also that the nodes aren’t all on the same rack.)
- Java as an option to do in-database analytics. (Who knew that feature was still missing?)
- Some analytic functionality. (Approximate COUNT DISTINCT, but not yet Approximate MEDIAN.)
Overall, two recurring themes in our discussion were:
- Load and ETL (Extract/Transform/Load) performance, and/or obviating ETL.
- Short-request performance, in the form of more scalable short-request concurrency.
How Revolution Analytics parallelizes R
I talked tonight with Lee Edlefsen, Chief Scientist of Revolution Analytics, and now think I understand Revolution’s parallel R much better than I did before.
There are four primary ways that people try to parallelize predictive modeling:
- They can run the same algorithm on different parts of a dataset on different nodes, then return all the results, and claim they’ve parallelized. This is trivial and not really a solution. It is also the last-ditch fallback position for those who parallelize more seriously.
- They can generate intermediate results from different parts of a dataset on different nodes, then generate and return a single final result. This is what Revolution does.
- They can parallelize the linear algebra that underlies so many algorithms. Netezza and Greenplum tried this, but I don’t think it worked out very well in either case. Lee cited a saying in statistical computing “If you’re using matrices, you’re doing it wrong”; he thinks shortcuts and workarounds are almost always the better way to go.
- They can jack up the speed of inter-node communication, perhaps via MPI (Messaging Passing Interface), so that full parallelization isn’t needed. That’s SAS’ main approach.
One confusing aspect of this discussion is that it could reference several heavily-overlapping but not identical categories of algorithms, including:
- External memory algorithms, which operates on datasets too big to fit in main memory, by — for starters — reading in and working on a part of the data at a time. Lee observes that these are almost always parallelizable.
- What Revolution markets as External Memory Algorithms, which are those external memory algorithms it has gotten around to implementing so far. These are all parallelized. They are also all in the category of …
- … algorithms that can be parallelized by:
- Operating on data in parts.
- Getting intermediate results.
- Combining them in some way for a final result.
- Algorithms of the previous category, where the way of combining them specifically is in the form of summation, such as those discussed in the famous paper Map-Reduce for Machine Learning on Multicore. Not all of Revolution’s current parallel algorithms fall into this group.
To be clear, all Revolution’s parallel algorithms are in Category #2 by definition and Category #3 in practice. However, they aren’t all in Category #4.
Categories: Greenplum, Hadoop, MapReduce, Netezza, Parallelization, Predictive modeling and advanced analytics, Revolution Analytics, Teradata | Leave a Comment |
RDBMS and their bundle-mates
Relational DBMS used to be fairly straightforward product suites, which boiled down to:
- A big SQL interpreter.
- A bunch of administrative and operational tools.
- Some very optional add-ons, often including an application development tool.
Now, however, most RDBMS are sold as part of something bigger.
- Oracle has hugely thickened its stack, as part of an Innovator’s Solution strategy — hardware, middleware, applications, business intelligence, and more.
- IBM has moved aggressively to a bundled “appliance” strategy. Even before that, IBM DB2 long sold much better to committed IBM accounts than as a software-only offering.
- Microsoft SQL Server is part of a stack, starting with the Windows operating system.
- Sybase was an exception to this rule, with thin(ner) stacks for both Adaptive Server Enterprise and Sybase IQ. But Sybase is now owned by SAP, and increasingly integrated as a business with …
- … SAP HANA, which is closely associated with SAP’s applications.
- Teradata has always been a hardware/software vendor. The most successful of its analytic DBMS rivals, in some order, are:
- Netezza, a pure appliance vendor, now part of IBM.
- Greenplum, an appliance-mainly vendor for most (not all) of its existence, and in particular now as a part of EMC Pivotal.
- Vertica, more of a software-only vendor than the others, but now owned by and increasingly mainstreamed into hardware vendor HP.
- MySQL’s glory years were as part of the “LAMP” stack.
- Various thin-stack RDBMS that once were or could have been important market players … aren’t. Examples include Progress OpenEdge, IBM Informix, and the various strays adopted by Actian.
Comments on the 2013 Gartner Magic Quadrant for Operational Database Management Systems
The 2013 Gartner Magic Quadrant for Operational Database Management Systems is out. “Operational” seems to be Gartner’s term for what I call short-request, in each case the point being that OLTP (OnLine Transaction Processing) is a dubious term when systems omit strict consistency, and when even strictly consistent systems may lack full transactional semantics. As is usually the case with Gartner Magic Quadrants:
- I admire the raw research.
- The opinions contained are generally reasonable (especially since Merv Adrian joined the Gartner team).
- Some of the details are questionable.
- There’s generally an excessive focus on Gartner’s perception of vendors’ business skills, and on vendors’ willingness to parrot all the buzzphrases Gartner wants to hear.
- The trends Gartner highlights are similar to those I see, although our emphasis may be different, and they may leave some important ones out. (Big omission — support for lightweight analytics integrated into operational applications, one of the more genuine forms of real-time analytics.)
Anyhow: Read more
Splunk strengthens its stack
I’m a little shaky on embargo details — but I do know what was in my own quote in a Splunk press release that went out yesterday. 🙂
Splunk has been rolling out a lot of news. In particular:
- Hunk follows through on the Hadoop/Splunk (get it?) co-opetition I foreshadowed last year, including access to Hadoop via the same tools that run over the Splunk data store, plus …
- … some Datameer-like capabilities to view partial Hadoop-job results as they flow in.
- Splunk 6 has lots of new features, including a bunch of better please-don’t-call-it-BI capabilities, and …
- … a high(er)-performance data store into which you can selectively copy columns of data.
I imagine there are some operationally-oriented use cases for which Splunk instantly offers the best Hadoop business intelligence choice available. But what I really think is cool is Splunk’s schema-on-need story, wherein:
- Data comes in wholly schema-less, in a time series of text snippets.
- Some of the fields in the text snippets are indexed for faster analysis, automagically or upon user decree.
- All this can now happen over the Splunk data store or (new option) over Hadoop.
- Fields can (in another new option) also be copied to a separate data store, claimed to be of much higher performance.
That highlights a pretty serious and flexible vertical analytic stack. I like it.