Are analytic RDBMS and data warehouse appliances obsolete?
I used to spend most of my time — blogging and consulting alike — on data warehouse appliances and analytic DBMS. Now I’m barely involved with them. The most obvious reason is that there have been drastic changes in industry structure:
- Many of the independent vendors were swooped up by acquisition.
- None of those acquisitions was a big success.
- Microsoft did little with DATAllegro.
- Netezza struggled with R&D after being bought by IBM. An IBMer recently told me that their main analytic RDBMS engine was BLU.
- I hear about Vertica more as a technology to be replaced than as a significant ongoing market player.
- Pivotal open-sourced Greenplum. I have detected few people who care.
- Ditto for Actian’s offerings.
- Teradata claimed a few large Aster accounts, but I never hear of Aster as something to compete or partner with.
- Smaller vendors fizzled too. Hadapt and Kickfire went to Teradata as more-or-less acquihires. InfiniDB folded. Etc.
- Impala and other Hadoop-based alternatives are technology options.
- Oracle, Microsoft, IBM and to some extent SAP/Sybase are still pedaling along … but I rarely talk with companies that big. 🙂
Simply reciting all that, however, begs the question of whether one should still care about analytic RDBMS at all.
My answer, in a nutshell, is:
Analytic RDBMS — whether on premises in software, in the form of data warehouse appliances, or in the cloud — are still great for hard-core business intelligence, where “hard-core” can refer to ad-hoc query complexity, reporting/dashboard concurrency, or both. But they aren’t good for much else.
Teradata will support Presto
At the highest level:
- Presto is, roughly speaking, Facebook’s replacement for Hive, at least for queries that are supposed to run at interactive speeds.
- Teradata is announcing support for Presto with a classic open source pricing model.
- Presto will also become, roughly speaking, Teradata’s replacement for Hive.
- Teradata’s Presto efforts are being conducted by the former Hadapt.
Now let’s make that all a little more precise.
Regarding Presto (and I got most of this from Teradata)::
- To a first approximation, Presto is just another way to write SQL queries against HDFS (Hadoop Distributed File System). However …
- … Presto queries other data stores too, such as various kinds of RDBMS, and federates query results.
- Facebook at various points in time created both Hive and now Presto.
- Facebook started the Presto project in 2012 and now has 10 engineers on it.
- Teradata has named 16 engineers – all from Hadapt – who will be contributing to Presto.
- Known serious users of Presto include Facebook, Netflix, Groupon and Airbnb. Airbnb likes Presto well enough to have 1/3 of its employees using it, via an Airbnb-developed tool called Airpal.
- Facebook is known to have a cluster cited at 300 petabytes and 4000 users where Presto is presumed to be a principal part of the workload.
Daniel Abadi said that Presto satisfies what he sees as some core architectural requirements for a modern parallel analytic RDBMS project: Read more
An idealized log management and analysis system — from whom?
I’ve talked with many companies recently that believe they are:
- Focused on building a great data management and analytic stack for log management …
- … unlike all the other companies that might be saying the same thing 🙂 …
- … and certainly unlike expensive, poorly-scalable Splunk …
- … and also unlike less-focused vendors of analytic RDBMS (which are also expensive) and/or Hadoop distributions.
At best, I think such competitive claims are overwrought. Still, it’s a genuinely important subject and opportunity, so let’s consider what a great log management and analysis system might look like.
Much of this discussion could apply to machine-generated data in general. But right now I think more players are doing product management with an explicit conception either of log management or event-series analytics, so for this post I’ll share that focus too.
A short answer might be “Splunk, but with more analytic functionality and more scalable performance, at lower cost, plus numerous coupons for free pizza.” A more constructive and bottoms-up approach might start with: Read more
Notes from a visit to Teradata
I spent a day with Teradata in Rancho Bernardo last week. Most of what we discussed is confidential, but I think the non-confidential parts and my general impressions add up to enough for a post.
First, let’s catch up with some personnel gossip. So far as I can tell:
- Scott Gnau runs most of Teradata’s development, product management, and product marketing, the big exception being that …
- … Darryl McDonald run the apps part (Aprimo and so on), and no longer is head of marketing.
- Oliver Ratzesberger runs Teradata’s software development.
- Jeff Carter has returned to his roots and runs the hardware part, in place of Carson Schmidt.
- Aster founders Mayank Bawa and Tasso Argyros have left Teradata (perhaps some earn-out period ended).
- Carson is temporarily running Aster development (in place of Mayank), and has some sort of evangelism role waiting after that.
- With the acquisition of Hadapt, Teradata gets some attention from Dan Abadi. Also, they’re retaining Justin Borgman.
The biggest change in my general impressions about Teradata is that they’re having smart thoughts about the cloud. At least, Oliver is. All details are confidential, and I wouldn’t necessarily expect them to become clear even in October (which once again is the month for Teradata’s user conference). My main concern about all that is whether Teradata’s engineering team can successfully execute on Oliver’s directives. I’m optimistic, but I don’t have a lot of detail to support my good feelings.
In some quick-and-dirty positioning and sales qualification notes, which crystallize what we already knew before:
- The Teradata 1xxx series is focused on cost-per-bit.
- The Teradata 2xxx series is focused on cost-per-query. It is commonly Teradata’s “lead” product, at least for new customers.
- The Teradata 6xxx series is supposed to be able to do “everything”.
- The Teradata Aster “Discovery Analytics” platform is sold mainly to customers who have a specific high-value problem to solve. (Randy Lea gave me a nice round dollar number, but I won’t share it.) I like that approach, as it obviates much of the concern about “Wait — is this strategic for us long-term, given that we also have both Teradata database and Hadoop clusters?”
Also: Read more
Categories: Aster Data, Data warehouse appliances, Data warehousing, Hadapt, Hadoop, MapReduce, Solid-state memory, Teradata | 2 Comments |
Teradata bought Hadapt and Revelytix
My client Teradata bought my (former) clients Revelytix and Hadapt.* Obviously, I’m in confidentiality up to my eyeballs. That said — Teradata truly doesn’t know what it’s going to do with those acquisitions yet. Indeed, the acquisitions are too new for Teradata to have fully reviewed the code and so on, let alone made strategic decisions informed by that review. So while this is just a guess, I conjecture Teradata won’t say anything concrete until at least September, although I do expect some kind of stated direction in time for its October user conference.
*I love my business, but it does have one distressing aspect, namely the combination of subscription pricing and customer churn. When your customers transform really quickly, or even go out of existence, so sometimes does their reliance on you.
I’ve written extensively about Hadapt, but to review:
- The HadoopDB project was started by Dan Abadi and two grad students.
- HadoopDB tied a bunch of PostgreSQL instances together with Hadoop MapReduce. Lab benchmarks suggested it was more performant than the coyly named DBx (where x=2), but not necessarily competitive with top analytic RDBMS.
- Hadapt was formed to commercialize HadoopDB.
- After some fits and starts, Hadapt was a Cambridge-based company. Former Vertica CEO Chris Lynch invested even before he was a VC, and became an active chairman. Not coincidentally, Hadapt had a bunch of Vertica folks.
- Hadapt decided to stick with row-based PostgreSQL, Dan Abadi’s previous columnar enthusiasm notwithstanding. Not coincidentally, Hadapt’s performance never blew anyone away.
- Especially after the announcement of Cloudera Impala, Hadapt’s SQL-on-Hadoop positioning didn’t work out. Indeed, Hadapt laid off most or all of its sales and marketing folks. Hadapt pivoted to emphasize its schema-on-need story.
- Chris Lynch, who generally seems to think that IT vendors are created to be sold, shopped Hadapt aggressively.
As for what Teradata should do with Hadapt: Read more
Categories: Aster Data, Citus Data, Cloudera, Columnar database management, Data warehousing, Hadapt, Hadoop, MapReduce, Oracle, SQL/Hadoop integration, Teradata | 8 Comments |
Notes and comments, March 17, 2014
I have ever more business-advice posts up on Strategic Messaging. Recent subjects include pricing and stealth-mode marketing. Other stuff I’ve been up to includes:
The Spark buzz keeps increasing; almost everybody I talk with expects Spark to win big, probably across several use cases.
Disclosure: I’ll soon be in a substantial client relationship with Databricks, hoping to improve their stealth-mode marketing. 😀
The “real-time analytics” gold rush I called out last year continues. A large fraction of the vendors I talk with have some variant of “real-time analytics” as a central message.
Basho had a major change in leadership. A Twitter exchange ensued. 🙂 Joab Jackson offered a more sober — figuratively and literally — take.
Hadapt laid off its sales and marketing folks, and perhaps some engineers as well. In a nutshell, Hadapt’s approach to SQL-on-Hadoop wasn’t selling vs. the many alternatives, and Hadapt is doubling down on poly-structured data*/schema-on-need.
*While Hadapt doesn’t to my knowledge use the term “poly-structured data”, some other vendors do. And so I may start using it more myself, at least when the poly-structured/multi-structured distinction actually seems significant.
WibiData is partnering with DataStax, WibiData is of course pleased to get access to Cassandra’s user base, which gave me the opportunity to ask why they thought Cassandra had beaten HBase in those accounts. The answer was performance and availability, while Cassandra’s traditional lead in geo-distribution wasn’t mentioned at all.
Disclosure: My fingerprints are all over that deal.
In other news, WibiData has had some executive departures as well, but seems to be staying the course on its strategy. I continue to think that WibiData has a really interesting vision about how to do large-data-volume interactive computing, and anybody in that space would do well to talk with them or at least look into the open source projects WibiData sponsors.
I encountered another apparently-popular machine-learning term — bandit model. It seems to be glorified A/B testing, and it seems to be popular. I think the point is that it tries to optimize for just how much you invest in testing unproven (for good or bad) alternatives.
I had an awkward set of interactions with Gooddata, including my longest conversations with them since 2009. Gooddata is in the early days of trying to offer an all-things-to-all-people analytic stack via SaaS (Software as a Service). I gather that Hadoop, Vertica, PostgreSQL (a cheaper Vertica alternative), Spark, Shark (as a faster version of Hive) and Cassandra (under the covers) are all in the mix — but please don’t hold me to those details.
I continue to think that computing is moving to a combination of appliances, clusters, and clouds. That said, I recently bought a new gaming-class computer, and spent many hours gaming on it just yesterday.* I.e., there’s room for general-purpose workstations as well. But otherwise, I’m not hearing anything that contradicts my core point.
*The last beta weekend for The Elder Scrolls Online; I loved Morrowind.
Distinctions in SQL/Hadoop integration
Ever more products try to integrate SQL with Hadoop, and discussions of them seem confused, in line with Monash’s First Law of Commercial Semantics. So let’s draw some distinctions, starting with (and these overlap):
- Are the SQL engine and Hadoop:
- Necessarily on the same cluster?
- Necessarily or at least most naturally on different clusters?
- How, if at all, is Hadoop invoked by the SQL engine? Specifically, what is the role of:
- HDFS (Hadoop Distributed File System)?
- Hadoop MapReduce?
- HCatalog?
- How, if at all, is the SQL engine invoked by Hadoop?
In particular:
- If something is called a “connector”, then Hadoop and the SQL engine are most likely on separate clusters. Good features include (but these can partially contradict each other):
- A way of making data transfer maximally parallel.
- Query planning that is smart about when to process on the SQL engine and when to use Hadoop’s native SQL (Hive or otherwise).
- If something is called “SQL-on-Hadoop”, then Hadoop and the SQL engine are or should be on the same cluster, using the same nodes to store and process data. But while that’s a necessary condition, I’d prefer that it not be sufficient.
Let’s go to some examples. Read more
JSON in Teradata
I coined the term schema-on-need last month. More precisely, I coined it while being briefed on JSON-in-Teradata, which was announced earlier this week, and is slated for availability in the first half of 2014.
The basic JSON-in-Teradata story is as you expect:
- A JSON document is stuck into a relational field.
(Oddly, Teradata wasn’t yet sure whether the field would be a BLOB or VARCHAR or something else.)Edit: See Dan Graham’s comment below. - Fields within the JSON document can be indexed on.
- Those fields can be referenced in SQL statements much as regular Teradata columns can.
You have to retrieve the whole document.Edit: See Dan Graham’s comment below.- To avert the performance pain of retrieving the whole document, you can of course copy any particular field into a column of its own. (That’s the schema-on-need part of the story.)
JSON virtual columns are referenced a little differently than ordinary physical columns are. Thus, if you materialize a virtual column, you have to change your SQL. If you’re doing business intelligence through a semantic layer, or otherwise have some kind of declarative translation, that’s probably not a big drawback. If you’re coding analytic procedures directly, it still may not be a big drawback — hopefully you won’t reference the virtual column too many times in code before you decide to materialize it instead.
My Bobby McFerrin* imitation notwithstanding, Hadapt illustrates a schema-on-need approach that is slicker than Teradata’s in two ways. First, Hadapt has full SQL transparency between virtual and physical columns. Second, Hadapt handles not just JSON, but anything represented by key-value pairs. Still, like XML before it but more concisely, JSON is a pretty versatile data interchange format. So JSON-in-Teradata would seem to be useful as it stands.
*The singer in the classic 1988 music video Don’t Worry Be Happy. The other two performers, of course, were Elton John and Robin Williams.
Categories: Data models and architecture, Data warehousing, Hadapt, Schema on need, Structured documents, Teradata | 3 Comments |
Layering of database technology & DBMS with multiple DMLs
Two subjects in one post, because they were too hard to separate from each other
Any sufficiently complex software is developed in modules and subsystems. DBMS are no exception; the core trinity of parser, optimizer/planner, and execution engine merely starts the discussion. But increasingly, database technology is layered in a more fundamental way as well, to the extent that different parts of what would seem to be an integrated DBMS can sometimes be developed by separate vendors.
Major examples of this trend — where by “major” I mean “spanning a lot of different vendors or projects” — include:
- The object/relational, aka universal, extensibility features developed in the 1990s for Oracle, DB2, Informix, Illustra, and Postgres. The most successful extensions probably have been:
- Geospatial indexing via ESRI.
- Full-text indexing, notwithstanding questionable features and performance.
- MySQL storage engines.
- MPP (Massively Parallel Processing) analytic RDBMS relying on single-node PostgreSQL, Ingres, and/or Microsoft SQL Server — e.g. Greenplum (especially early on), Aster (ditto), DATAllegro, DATAllegro’s offspring Microsoft PDW (Parallel Data Warehouse), or Hadapt.
- Splits in which a DBMS has serious processing both in a “database” layer and in a predicate-pushdown “storage” layer — most famously Oracle Exadata, but also MarkLogic, InfiniDB, and others.
- SQL-on-HDFS — Hive, Impala, Stinger, Shark and so on (including Hadapt).
Other examples on my mind include:
- Data manipulation APIs being added to key-value stores such as Couchbase and Aerospike.
- TokuMX, the Tokutek/MongoDB hybrid I just blogged about.
- NuoDB’s willing reliance on third-party key-value stores (or HDFS in the role of one).
- FoundationDB’s strategy, and specifically its acquisition of Akiban.
And there are several others I hope to blog about soon, e.g. current-day PostgreSQL.
In an overlapping trend, DBMS increasingly have multiple data manipulation APIs. Examples include: Read more
Dave DeWitt responds to Daniel Abadi
A few days ago I posted Daniel Abadi’s thoughts in a discussion of Hadapt, Microsoft PDW (Parallel Data Warehouse)/PolyBase, Pivotal/Greenplum Hawq, and other SQL-Hadoop combinations. This is Dave DeWitt’s response. Emphasis mine.
Read more