Parallelization
Analysis of issues in parallel computing, especially parallelized database management. Related subjects include:
Curt Monash on video
I made a remarkably rumpled video appearance yesterday with SiliconAngle honchos John Furrier and Dave Vellante. (Excuses include <3 hours sleep, and then a scrambling reaction to a schedule change.) Topics covered included, with approximate timechecks:
- 0:00 Introductory pabulum, and some technical difficulties
- 2:00 More introduction
- 3:00 Dynamic schemas and data model churn
- 6:00 Surveillance and privacy
- 13:00 Hadoop, especially the distro wars
- 22:00 BI innovation
- 23:30 More on dynamic schemas and data model churn
Edit: Some of my remarks were transcribed.
Related links
- I posted on dynamic schemas data model churn a few days ago.
- I capped off a series on privacy and surveillance a few days ago.
- I commented on various Hadoop distributions in June.
Categories: Business intelligence, ClearStory Data, Data warehousing, Hadoop, MapR, MapReduce, Surveillance and privacy | Leave a Comment |
Hortonworks, Hadoop, Stinger and Hive
I chatted yesterday with the Hortonworks gang. The main subject was Hortonworks’ approach to SQL-on-Hadoop — commonly called Stinger — but at my request we cycled through a bunch of other topics as well. Company-specific notes include:
- Hortonworks founder J. Eric “Eric14” Baldeschwieler is no longer at Hortonworks, although I imagine he stays closely in touch. What he’s doing next is unspecified, except by the general phrase “his own thing”. (Derrick Harris has more on Eric’s departure.)
- John Kreisa still is at Hortonworks, just not as marketing VP. Think instead of partnerships and projects.
- ~250 employees.
- ~70-75 subscription customers.
Our deployment and use case discussions were a little confused, because a key part of Hortonworks’ strategy is to support and encourage the idea of combining use cases and workloads on a single cluster. But I did hear:
- 10ish nodes for a typical starting cluster.
- 100ish nodes for a typical “data lake” committed adoption.
- Teradata UDA (Unified Data Architecture)* customers sometimes (typically?) jumping straight to a data lake scenario.
- A few users in the 10s of 1000s of nodes. (Obviously Yahoo is one.)
- HBase used in >50% of installations.
- Hive probably even more than that.
- Hortonworks is seeing a fair amount of interest in Windows Hadoop deployments.
*By the way — Teradata seems serious about pushing the UDA as a core message.
Ecosystem notes, in Hortonworks’ perception, included:
- Cloudera is obviously Hortonworks’ biggest distro competitor. Next is IBM, presumably in its blue-forever installed base. MapR is barely on the radar screen; Pivotal’s likely rise hasn’t yet hit sales reports.
- Hortonworks evidently sees a lot of MicroStrategy and Tableau, and some Platfora and Datameer, the latter two at around the same level of interest.
- Accumulo is a big deal in the Federal government, and has gotten a few health care wins as well. Its success is all about security. (Note: That’s all consistent with what I hear elsewhere.)
I also asked specifically about OpenStack. Hortonworks is a member of the OpenStack project, contributes nontrivially to Swift and other subprojects, and sees Rackspace as an important partner. But despite all that, I think strong Hadoop/OpenStack integration is something for the indefinite future.
Hortonworks’ views about Hadoop 2.0 start from the premise that its goal is to support running a multitude of workloads on a single cluster. (See, for example, what I previously posted about Tez and YARN.) Timing notes for Hadoop 2.0 include:
- It’s been in preview/release candidate/commercial beta mode for weeks.
- Q3 is the goal; H2 is the emphatic goal.
- Yahoo’s been in production with YARN >8 months, and has no MapReduce 1 clusters left. (Yahoo has >35,000 Hadoop nodes.)
- The last months of delays have been mainly about sprucing up various APIs and protocols, which may need to serve for a similar multi-year period as Hadoop 1’s have. But there also was some YARN stabilization into May.
Frankly, I think Cloudera’s earlier and necessarily incremental Hadoop 2 rollout was a better choice than Hortonworks’ later big bang, even though the core-mission aspect of Hadoop 2.0 is what was least ready. HDFS (Hadoop Distributed File System) performance, NameNode failover and so on were well worth having, and it’s more than a year between Cloudera starting supporting them and when Hortonworks is offering Hadoop 2.0.
Hortonworks’ approach to doing SQL-on-Hadoop can be summarized simply as “Make Hive into as good an analytic RDBMS as possible, all in open source”. Key elements include: Read more
The refactoring of everything
I’ll start with three observations:
- Computer systems can’t be entirely tightly coupled — nothing would ever get developed or tested.
- Computer systems can’t be entirely loosely coupled — nothing would ever get optimized, in performance and functionality alike.
- In an ongoing trend, there is and will be dramatic refactoring as to which connections wind up being loose or tight.
As written, that’s probably pretty obvious. Even so, it’s easy to forget just how pervasive the refactoring is and is likely to be. Let’s survey some examples first, and then speculate about consequences. Read more
Impala and Parquet
I visited Cloudera Friday for, among other things, a chat about Impala with Marcel Kornacker and colleagues. Highlights included:
- Impala is meant to someday be a competitive MPP (Massively Parallel Processing) analytic RDBMS.
- At the moment, it is not one. For example, Impala lacks any meaningful form of workload management or query optimization.
- While Impala will run against any HDFS (Hadoop Distributed File System) file format, claims of strong performance assume that the data is in Parquet …
- … which is the replacement for the short-lived Trevni …
- … and which for most practical purposes is true columnar.
- Impala is also meant to be more than an RDBMS; Parquet and presumably in the future Impala can accommodate nested data structures.
- Just as Impala runs against most or all HDFS file formats, Parquet files can be used by most Hadoop execution engines, and of course by Pig and Hive.
- The Impala roadmap includes workload management, query optimization, data skipping, user-defined functions, hash distribution, two turtledoves, and a partridge in a pear tree.
Data gets into Parquet via batch jobs only — one reason it’s important that Impala run against multiple file formats — but background format conversion is another roadmap item. A single table can be split across multiple formats — e.g., the freshest data could be in HBase, with the rest is in Parquet.
Webinar Wednesday, June 26, 1 pm EST — Real-Time Analytics
I’m doing a webinar Wednesday, June 26, at 1 pm EST/10 am PST called:
Real-Time Analytics in the Real World
The sponsor is MemSQL, one of my numerous clients to have recently adopted some version of a “real-time analytics” positioning. The webinar sign-up form has an abstract that I reviewed and approved … albeit before I started actually outlining the talk. 😉
Our plan is:
- I’ll review the multiple technologies and use cases that various companies call “real-time analytics”. I’m not planning for this part to be at all MemSQL-focused.*
- MemSQL will review some specific use cases they feel their product — memory-centric scale-out RDBMS — has proven it supports.
*MemSQL is debuting pretty high in my rankings of content sponsors who are cool with vendor neutrality. I sent them a draft of my slides mentioning other tech vendors and not them, and they didn’t blink.
In other news, I’ll be in California over the next week. Mainly I’ll be visiting clients — and 2 non-clients and some family — 10:00 am through dinner, but I did set aside time to stop by GigaOm Structure on Wednesday. I have sniffles/cough/other stuff even before I go. So please don’t expect a lot of posts until I’ve returned, rested up a bit, and also prepared my webinar deck.
Categories: Analytic technologies, In-memory DBMS, MemSQL, NewSQL, Parallelization | 1 Comment |
Dave DeWitt responds to Daniel Abadi
A few days ago I posted Daniel Abadi’s thoughts in a discussion of Hadapt, Microsoft PDW (Parallel Data Warehouse)/PolyBase, Pivotal/Greenplum Hawq, and other SQL-Hadoop combinations. This is Dave DeWitt’s response. Emphasis mine.
Read more
Categories: Benchmarks and POCs, Cloudera, Clustering, Data warehousing, Greenplum, Hadapt, Hadoop, MapReduce, Microsoft and SQL*Server, PostgreSQL, SQL/Hadoop integration | 6 Comments |
SQL-Hadoop architectures compared
The genesis of this post is:
- Dave DeWitt sent me a paper about Microsoft Polybase.
- I argued with Dave about the differences between Polybase and Hadapt.
- I asked Daniel Abadi for his opinion.
- Dan agreed with Dave, in a long email …
- … that he graciously permitted me to lightly-edit and post.
I love my life.
Per Daniel (emphasis mine): Read more
Categories: Aster Data, Data warehousing, Greenplum, Hadapt, Hadoop, MapReduce, Microsoft and SQL*Server, SQL/Hadoop integration, Theory and architecture | 13 Comments |
Syncsort extends Hadoop MapReduce
My client Syncsort:
- Is an ETL (Extract/Transform/Load) vendor, whose flagship product DMExpress was evidently renamed to DMX.
- Has a strong history in and fondness for sort.
- Has announced a new ETL product, DMX-h ETL Edition, which uses Hadoop MapReduce to parallelize DMX by controlling a copy of DMX that resides on every data node of the Hadoop cluster.*
- Has also announced the closely-related DMX-h Sort Edition, offering acceleration for the sorts inherent in Map and Reduce steps.
- Contributed a patch to Apache Hadoop to open up Hadoop MapReduce to make all this possible.
*Perhaps we should question Syncsort’s previous claims of having strong multi-node parallelism already. 🙂
The essence of the Syncsort DMX-h ETL Edition story is:
- DMX-h inherits the various ETL-suite trappings of DMX.
- Syncsort claims DMX-h has major performance advantages vs., for example, Hive- or Pig-based alternatives.
- With a copy of DMX on every node, DMX-h can do parallel load/export.
More details can be found in a slide deck Syncsort graciously allowed me to post. Read more
Categories: Cloudera, Clustering, EAI, EII, ETL, ELT, ETLT, Hadoop, MapReduce, Syncsort | 8 Comments |
MemSQL scales out
The third of my three MySQL-oriented clients I alluded to yesterday is MemSQL. When I wrote about MemSQL last June, the product was an in-memory single-server MySQL workalike. Now scale-out has been added, with general availability today.
MemSQL’s flagship reference is Zynga, across 100s of servers. Beyond that, the company claims (to quote a late draft of the press release):
Enterprises are already using distributed MemSQL in production for operational analytics, network security, real-time recommendations, and risk management.
All four of those use cases fit MemSQL’s positioning in “real-time analytics”. Besides Zynga, MemSQL cites penetration into traditional low-latency markets — financial services (various subsectors) and ad-tech.
Highlights of MemSQL’s new distributed architecture start: Read more
Introduction to Deep Information Sciences and DeepDB
I talked Friday with Deep Information Sciences, makers of DeepDB. Much like TokuDB — albeit with different technical strategies — DeepDB is a single-server DBMS in the form of a MySQL engine, whose technology is concentrated around writing indexes quickly. That said:
- DeepDB’s indexes can help you with analytic queries; hence, DeepDB is marketed as supporting OLTP (OnLine Transaction Processing) and analytics in the same system.
- DeepDB is marketed as “designed for big data and the cloud”, with reference to “Volume, Velocity, and Variety”. What I could discern in support of that is mainly:
- DeepDB has been tested at up to 3 terabytes at customer sites and up to 1 billion rows internally.
- Like most other NewSQL and NoSQL DBMS, DeepDB is append-only, and hence could be said to “stream” data to disk.
- DeepDB’s indexes could at some point in the future be made to work well with non-tabular data.*
- The Deep guys have plans and designs for scale-out — transparent sharding and so on.
*For reasons that do not seem closely related to product reality, DeepDB is marketed as if it supports “unstructured” data today.
Other NewSQL DBMS seem “designed for big data and the cloud” to at least the same extent DeepDB is. However, if we’re interpreting “big data” to include multi-structured data support — well, only half or so of the NewSQL products and companies I know of share Deep’s interest in branching out. In particular:
- Akiban definitely does. (Note: Stay tuned for some next-steps company news about Akiban.)
- Tokutek has planted a small stake there too.
- Key-value-store-backed NuoDB and GenieDB probably leans that way. (And SanDisk evidently shut down Schooner’s RDBMS while keeping its key-value store.)
- VoltDB, Clustrix, ScaleDB and MemSQL seem more strictly tabular, except insofar as text search is a requirement for everybody. (Edit: Oops; I forgot about Clustrix’s approach to JSON support.)
Edit: MySQL has some sort of an optional NoSQL interface, and hence so presumably do MySQL-compatible TokuDB, GenieDB, Clustrix, and MemSQL.
Also, some of those products do not today have the transparent scale-out that Deep plans to offer in the future.