Parallelization
Analysis of issues in parallel computing, especially parallelized database management. Related subjects include:
Notes from a visit to Teradata
I spent a day with Teradata in Rancho Bernardo last week. Most of what we discussed is confidential, but I think the non-confidential parts and my general impressions add up to enough for a post.
First, let’s catch up with some personnel gossip. So far as I can tell:
- Scott Gnau runs most of Teradata’s development, product management, and product marketing, the big exception being that …
- … Darryl McDonald run the apps part (Aprimo and so on), and no longer is head of marketing.
- Oliver Ratzesberger runs Teradata’s software development.
- Jeff Carter has returned to his roots and runs the hardware part, in place of Carson Schmidt.
- Aster founders Mayank Bawa and Tasso Argyros have left Teradata (perhaps some earn-out period ended).
- Carson is temporarily running Aster development (in place of Mayank), and has some sort of evangelism role waiting after that.
- With the acquisition of Hadapt, Teradata gets some attention from Dan Abadi. Also, they’re retaining Justin Borgman.
The biggest change in my general impressions about Teradata is that they’re having smart thoughts about the cloud. At least, Oliver is. All details are confidential, and I wouldn’t necessarily expect them to become clear even in October (which once again is the month for Teradata’s user conference). My main concern about all that is whether Teradata’s engineering team can successfully execute on Oliver’s directives. I’m optimistic, but I don’t have a lot of detail to support my good feelings.
In some quick-and-dirty positioning and sales qualification notes, which crystallize what we already knew before:
- The Teradata 1xxx series is focused on cost-per-bit.
- The Teradata 2xxx series is focused on cost-per-query. It is commonly Teradata’s “lead” product, at least for new customers.
- The Teradata 6xxx series is supposed to be able to do “everything”.
- The Teradata Aster “Discovery Analytics” platform is sold mainly to customers who have a specific high-value problem to solve. (Randy Lea gave me a nice round dollar number, but I won’t share it.) I like that approach, as it obviates much of the concern about “Wait — is this strategic for us long-term, given that we also have both Teradata database and Hadoop clusters?”
Also: Read more
Categories: Aster Data, Data warehouse appliances, Data warehousing, Hadapt, Hadoop, MapReduce, Solid-state memory, Teradata | 2 Comments |
Actian Vector Hadoop Edition
I have a small blacklist of companies I won’t talk with because of their particularly unethical past behavior. Actian is one such; they evidently made stuff up about me that Josh Berkus gullibly posted for them, and I don’t want to have conversations that could be dishonestly used against me.
That said, Peter Boncz isn’t exactly an Actian employee. Rather, he’s the professor who supervised Marcin Zukowski’s PhD thesis that became Vectorwise, and I chatted with Peter by Skype while he was at home in Amsterdam. I believe his assurances that no Actian personnel sat in on the call. 🙂
In other news, Peter is currently working on and optimistic about HyPer. But we literally spent less than a minute talking about that
Before I get to the substance, there’s been a lot of renaming at Actian. To quote Andrew Brust,
… the ParAccel, Pervasive and Vectorwise technologies are being unified under the Actian Analytics Platform brand. Specifically, the ParAccel technology … is being re-branded Actian Matrix; Pervasive’s technologies are rechristened Actian DataFlow and Actian DataConnect; and Vectorwise becomes Actian Vector.
and
Actian … is now “one company, with one voice and one platform” according to its John Santaferraro
The bolded part of the latter quote is untrue — at least in the ordinary sense of the word “one” — but the rest can presumably be taken as company gospel.
All this is by way of preamble to saying that Peter reached out to me about Actian’s new Vector Hadoop Edition when he blogged about it last June, and we finally talked this week. Highlights include: Read more
Categories: Actian and Ingres, Clustering, Database compression, Hadoop, ParAccel, Pervasive Software, SQL/Hadoop integration, VectorWise, Workload management | 4 Comments |
Teradata bought Hadapt and Revelytix
My client Teradata bought my (former) clients Revelytix and Hadapt.* Obviously, I’m in confidentiality up to my eyeballs. That said — Teradata truly doesn’t know what it’s going to do with those acquisitions yet. Indeed, the acquisitions are too new for Teradata to have fully reviewed the code and so on, let alone made strategic decisions informed by that review. So while this is just a guess, I conjecture Teradata won’t say anything concrete until at least September, although I do expect some kind of stated direction in time for its October user conference.
*I love my business, but it does have one distressing aspect, namely the combination of subscription pricing and customer churn. When your customers transform really quickly, or even go out of existence, so sometimes does their reliance on you.
I’ve written extensively about Hadapt, but to review:
- The HadoopDB project was started by Dan Abadi and two grad students.
- HadoopDB tied a bunch of PostgreSQL instances together with Hadoop MapReduce. Lab benchmarks suggested it was more performant than the coyly named DBx (where x=2), but not necessarily competitive with top analytic RDBMS.
- Hadapt was formed to commercialize HadoopDB.
- After some fits and starts, Hadapt was a Cambridge-based company. Former Vertica CEO Chris Lynch invested even before he was a VC, and became an active chairman. Not coincidentally, Hadapt had a bunch of Vertica folks.
- Hadapt decided to stick with row-based PostgreSQL, Dan Abadi’s previous columnar enthusiasm notwithstanding. Not coincidentally, Hadapt’s performance never blew anyone away.
- Especially after the announcement of Cloudera Impala, Hadapt’s SQL-on-Hadoop positioning didn’t work out. Indeed, Hadapt laid off most or all of its sales and marketing folks. Hadapt pivoted to emphasize its schema-on-need story.
- Chris Lynch, who generally seems to think that IT vendors are created to be sold, shopped Hadapt aggressively.
As for what Teradata should do with Hadapt: Read more
Categories: Aster Data, Citus Data, Cloudera, Columnar database management, Data warehousing, Hadapt, Hadoop, MapReduce, Oracle, SQL/Hadoop integration, Teradata | 8 Comments |
Optimism, pessimism, and fatalism — fault-tolerance, Part 2
The pessimist thinks the glass is half-empty.
The optimist thinks the glass is half-full.
The engineer thinks the glass was poorly designed.
Most of what I wrote in Part 1 of this post was already true 15 years ago. But much gets added in the modern era, considering that:
- Clusters will have node hiccups more often than single nodes will. (Duh.)
- Networks are relatively slow even when uncongested, and furthermore congest unpredictably.
- In many applications, it’s OK to sacrifice even basic-seeming database functionality.
And so there’s been innovation in numerous cluster-related subjects, two of which are:
- Distributed query and update. When a database is distributed among many modes, how does a request access multiple nodes at once?
- Fault-tolerance in long-running jobs.When a job is expected to run on many nodes for a long time, how can it deal with failures or slowdowns, other than through the distressing alternatives:
- Start over from the beginning?
- Keep (a lot of) the whole cluster’s resources tied up, waiting for things to be set right?
Distributed database consistency
When a distributed database lives up to the same consistency standards as a single-node one, distributed query is straightforward. Performance may be an issue, however, which is why we have seen a lot of:
- Analytic RDBMS innovation.
- Short-request applications designed to avoid distributed joins.
- Short-request clustered RDBMS that don’t allow fully-general distributed joins in the first place.
But in workloads with low-latency writes, living up to those standards is hard. The 1980s approach to distributed writing was two-phase commit (2PC), which may be summarized as: Read more
Categories: Clustering, CouchDB, Data warehousing, Databricks, Spark and BDAS, Facebook, Hadoop, MapReduce, Sybase, Theory and architecture, VoltDB and H-Store | 1 Comment |
Notes and comments, May 6, 2014
After visiting California recently, I made a flurry of posts, several of which generated considerable discussion.
- My claim that Spark will replace Hadoop MapReduce got much Twitter attention — including some high-profile endorsements — and also some responses here.
- My MemSQL post led to a vigorous comparison of MemSQL vs. VoltDB.
- My post on hardware and storage spawned a lively discussion of Hadoop hardware pricing; even Cloudera wound up disagreeing with what I reported Cloudera as having said. 🙂 Sadly, there was less response to the part about the partial (!) end of Moore’s Law.
- My Cloudera/SQL/Impala/Hive apparently was well-balanced, in that it got attacked from multiple sides via Twitter & email. Apparently, I was too hard on Impala, I was too hard on Hive, and I was too hard on boxes full of cardboard file cards as well.
- My post on the Intel/Cloudera deal garnered a comment reminding us Dell had pushed the Intel distro.
- My CitusDB post picked up a few clarifying comments.
Here is a catch-all post to complete the set. Read more
Introduction to CitusDB
One of my lesser-known clients is Citus Data, a largely Turkish company that is however headquartered in San Francisco. They make CitusDB, which puts a scale-out layer over a collection of fully-functional PostgreSQL nodes, much like Greenplum and Aster Data before it. However, in contrast to those and other Postgres-based analytic MPP (Massively Parallel Processing) DBMS:
- CitusDB does not permanently fork PostgreSQL; Citus Data has committed to always working with the latest PostgreSQL release, or at least with one that’s less than a year old.
- Citus Data never made the “fat head” mistake — if a join can’t be executed directly on the CitusDB data-storing nodes, it can’t be executed in CitusDB at all.
- CitusDB follows the modern best-practice of having many virtual nodes on each physical node. Default size of a virtual node is one gigabyte. Each virtual node is technically its own PostgreSQL table.*
- Citus Data has already introduced an open source column-store option for PostgreSQL, which CitusDB of course exploits.
*One benefit to this strategy, besides the usual elasticity and recovery stuff, is that while PostgreSQL may be single-core for any given query, a CitusDB query can use multiple cores by virtue of hitting multiple PostgreSQL tables on each node.
Citus has thrown a few things against the wall; for example, there are two versions of its product, one which involves HDFS (Hadoop Distributed File System) and one of which doesn’t. But I think Citus’ focus will be scale-out PostgreSQL for at least the medium-term future. Citus does have actual customers, and they weren’t all PostgreSQL users previously. Still, the main hope — at least until the product is more built-out — is that existing PostgreSQL users will find CitusDB easy to adopt, in technology and price alike.
MemSQL update
I stopped by MemSQL last week, and got a range of new or clarified information. For starters:
- Even though MemSQL (the product) was originally designed for OLTP (OnLine Transaction Processing), MemSQL (the company) is now focused on analytic use cases …
- … which was the point of introducing MemSQL’s flash-based columnar option.
- One MemSQL customer has a 100 TB “data warehouse” installation on Amazon.
- Another has “dozens” of terabytes of data spread across 500 machines, which aggregate 36 TB of RAM.
- At customer Shutterstock, 1000s of non-MemSQL nodes are monitored by 4 MemSQL machines.
- A couple of MemSQL’s top references are also Vertica flagship customers; one of course is Zynga.
- MemSQL reports encountering Clustrix and VoltDB in a few competitive situations, but not NuoDB. MemSQL believes that VoltDB is still hampered by its traditional issues — Java, reliance on stored procedures, etc.
On the more technical side: Read more
Spark on fire
Spark is on the rise, to an even greater degree than I thought last month.
- Numerous clients and other companies I talk with have adopted Spark, plan to adopt Spark, or at least think it’s likely they will. In particular:
- A number of analytic-stack companies are joining ClearStory in using Spark. Most of the specifics are confidential, but I hope some will be announced soon.
- MapR has joined Cloudera in supporting Spark, and indeed — unlike Cloudera — is supporting the full Spark stack.
- Mike Olson of Cloudera is on record as predicting that Spark will be the replacement for Hadoop MapReduce. Just about everybody seems to agree, except perhaps for Hortonworks folks betting on the more limited and less mature Tez. Spark’s biggest technical advantages as a general data processing engine are probably:
- The Directed Acyclic Graph processing model. (Any serious MapReduce-replacement contender will probably echo that aspect.)
- A rich set of programming primitives in connection with that model.
- Support also for highly-iterative processing, of the kind found in machine learning.
- Flexible in-memory data structures, namely the RDDs (Resilient Distributed Datasets).
- A clever approach to fault-tolerance.
- Spark is a major contender in streaming.
- There’s some cool machine-learning innovation using Spark.
- Spark 1.0 will drop by mid-May, Apache voters willin’ an’ the creek don’ rise. Publicity will likely ensue, with strong evidence of industry support.*
*Yes, my fingerprints are showing again.
The most official description of what Spark now contains is probably the “Spark ecosystem” diagram from Databricks. However, at the time of this writing it is slightly out of date, as per some email from Databricks CEO Ion Stoica (quoted with permission):
… but if I were to redraw it, SparkSQL will replace Shark, and Shark will eventually become a thin layer above SparkSQL and below BlinkDB.
With this change, all the modules on top of Spark (i.e., SparkStreaming, SparkSQL, GraphX, and MLlib) are part of the Spark distribution. You can think of these modules as libraries that come with Spark.
NoSQL vs. NewSQL vs. traditional RDBMS
I frequently am asked questions that boil down to:
- When should one use NoSQL?
- When should one use a new SQL product (NewSQL or otherwise)?
- When should one use a traditional RDBMS (most likely Oracle, DB2, or SQL Server)?
The details vary with context — e.g. sometimes MySQL is a traditional RDBMS and sometimes it is a new kid — but the general class of questions keeps coming. And that’s just for short-request use cases; similar questions for analytic systems arise even more often.
My general answers start:
- Sometimes something isn’t broken, and doesn’t need fixing.
- Sometimes something is broken, and still doesn’t need fixing. Legacy decisions that you now regret may not be worth the trouble to change.
- Sometimes — especially but not only at smaller enterprises — choices are made for you. If you operate on SaaS, plus perhaps some generic web hosting technology, the whole DBMS discussion may be moot.
In particular, migration away from legacy DBMS raises many issues: Read more
Categories: Columnar database management, Couchbase, HBase, In-memory DBMS, Microsoft and SQL*Server, NewSQL, NoSQL, OLTP, Oracle, Parallelization, SAP AG | 18 Comments |
Wants vs. needs
In 1981, Gerry Chichester and Vaughan Merlyn did a user-survey-based report about transaction-oriented fourth-generation languages, the leading application development technology of their day. The report included top-ten lists of important features during the buying cycle and after implementation. The items on each list were very similar — but the order of the items was completely different. And so the report highlighted what I regard as an eternal truth of the enterprise software industry:
What users value in the product-buying process is quite different from what they value once a product is (being) put into use.
Here are some thoughts about how that comes into play today.
Wants outrunning needs
1. For decades, BI tools have been sold in large part via demos of snazzy features the CEO would like to have on his desk. First it was pretty colors; then it was maps; now sometimes it’s “real-time” changing displays. Other BI features, however, are likely to be more important in practice.
2. In general, the need for “real-time” BI data freshness is often exaggerated. If you’re a human being doing a job that’s also often automated at high speed — for example network monitoring or stock trading — there’s a good chance you need fully human real-time BI. Otherwise, how much does a 5-15 minute delay hurt? Even if you’re monitoring website sell-through — are your business volumes really high enough that 5 minutes matters much? eBay answered “yes” to that question many years ago, but few of us work for businesses anywhere near eBay’s scale.
Even so, the want for speed keeps growing stronger. 🙂
3. Similarly, some desires for elastic scale-out are excessive. Your website selling koi pond accessories should always run well on a single server. If you diversify your business to the point that that’s not true, you’ll probably rewrite your app by then as well.
4. Some developers want to play with cool new tools. That doesn’t mean those tools are the best choice for the job. In particular, boring old SQL has merits — such as joins! — that shiny NoSQL hasn’t yet replicated.
5. Some developers, on the other hand, want to keep using their old tools, on which they are their employers’ greatest experts. That doesn’t mean those tools are the best choice for the job either.
6. More generally, some enterprises insist on brand labels that add little value but lots of expense. Yes, there are many benefits to vendor consolidation, and you may avoid many headaches if you stick with not-so-cutting-edge technology. But “enterprise-grade” hardware failure rates may not differ enough from “consumer-grade” ones to be worth paying for.