SQL/Hadoop integration
Discussion of SQL-on-Hadoop and other forms of SQL/Hadoop integration.
Hadoop/RDBMS integration: Aster SQL-H and Hadapt
Two of the more interesting approaches for integrating Hadoop and MapReduce with relational DBMS come from my clients at Teradata Aster (via SQL/MR and SQL-H) and Hadapt. In both cases, the story starts:
- You can dump any kind of data you want into Hadoop’s file system.
- You can have data in a scale-out RDBMS to get good performance on analytic SQL.
- You can access all the data (not just the relationally stored part) via SQL.
- You can do MapReduce on all the data (not just the Hadoop-stored part).
- To varying degrees, Hadapt and Aster each offer three kinds of advantage over Hadoop-with-Hive:
- SQL performance is (much) better.
- SQL functionality is better.
- At least some of your employees — the “business analysts” — can invoke MapReduce processes through SQL, if somebody else (e.g. your techies or the vendor’s) coded them up in the first place.
Of course, there are plenty of differences. Those start: Read more
Categories: Aster Data, Hadapt, Hadoop, Pricing, SQL/Hadoop integration, Teradata | 5 Comments |
The Teradata Aster Big Analytics Aster/Hadoop appliance
My clients at Teradata are introducing a mix-em/match-em Aster/Hadoop box, officially called the Teradata Aster Big Analytics Appliance. Basics include:
- You can fill a rack with nodes either for the Aster DBMS or for Hadoop (Hortonworks flavor), or you can combine them in the same box.
- If you combine them, they share management software (adapted from mainstream Teradata’s) and Infiniband.
- An Aster node has 16 2.6-gigahertz cores and 24 900GB disk drives.
- A Hadoop node has 12 2.0-gigahertz cores and 12 3TB drives.
- A central part of Teradata’s strategy is that Aster and Hadoop nodes can work together via SQL-H.
- The Teradata Aster Big Analytics Appliance is based on a family of Dell servers that fit more compactly into racks than do Teradata’s traditional products.
- The Teradata Aster Big Analytics Appliance replaces a previous interim Teradata Aster appliance that used similar hardware to that in other Teradata systems.
My views on the Teradata Aster Big Analytics Appliance start: Read more
Categories: Aster Data, Hadapt, Pricing, SQL/Hadoop integration, Teradata | 3 Comments |
Hadapt Version 2
My clients at Hadapt are coming out with a Version 2 to be available in Q1 2013, and perhaps slipstreaming some of the features before then. At that point, it will be reasonable to regard Hadapt as offering:
- A very tight integration between an RDBMS-based analytic platform and Hadoop …
- … that is decidedly immature as an analytic RDBMS …
- … but which strongly improves the SQL capabilities of Hadoop (vs., say, the alternative of using Hive).
Solr is in the mix as well.
Hadapt+Hadoop is positioned much more as “better than Hadoop” than “a better scale-out RDBMS”– and rightly so, due to its limitations when viewed strictly from an analytic RDBMS standpoint. I.e., Hadapt is meant for enterprises that want to do several of:
- Dump multi-structured data into Hadoop.
- Refine or just move some of it into an RDBMS.
- Bring in data from other RDBMS.
- Process of all the above via Hadoop MapReduce.
- Process of all the above via SQL.
- Use full-text indexes on the data.
Hadapt has 6 or so production customers, a dozen or so more coming online soon, 35 or so employees (mainly in Cambridge or Poland), reasonable amounts of venture capital, and the involvement of a variety of industry luminaries. Hadapt’s biggest installation seems to have 10s of terabytes of relational data and 100s of TBs of multi-structured; Hadapt is very confident in its ability to scale an order of magnitude beyond that with the Version 2 product, and reasonably confident it could go even further.
At the highest level, Hadapt works like this: Read more
Some Vertica 6 features
Vertica 6 was recently announced, and so it seemed like a good time to catch up on Vertica features. The main topics I want to address are:
- External tables and the associated new Hadoop connector.
- Online schema evolution.
- Workload management.
Also:
- I have some tidbits to add to my June, 2011 coverage of Vertica’s analytic functionality.
- I’ll stand for now on my previous coverage of Vertica’s database organization.
In general, the main themes of Vertica 6 appear to be:
- Enterprise/SaaS-friendliness, high uptime, and so on.
- Improved analytic usefulness.
Let’s do the analytic functionality first. Notes on that include:
- Vertica has extended its user-defined function/analytic procedure/whatever functionality to include user-defined load. (Same SDK, different specific classes.)
- One of the languages Vertica supports is R. But for now, parallel R is limited to “Of course, you can run the same functions and procedures on many nodes at once.”
- Based on community activity around bugs and so on, it seems there are users for Vertica’s JSON-based Twitter sentiment analysis plug-in.
I’ll also take this opportunity to expand on something I wrote about a few vendors — including Vertica — at the end of my post on approximate query results. When I probed how customers of Vertica and other RDBMS-based analytic platform vendors used vendor-proprietary advanced analytic SQL and other analytic capabilities, answers included: Read more
Teradata SQL-H, using HCatalog
When I grumbled about the conference-related rush of Hadoop announcements, one example of many was Teradata Aster’s SQL-H. Still, it’s an interesting idea, and a good hook for my first shot at writing about HCatalog. Indeed, other than the Talend integration bundled into Hortonworks’ HDP 1, Teradata SQL-H is the first real use of HCatalog I’m aware of.
The Teradata SQL-H idea is:
- Register your Hadoop data to HCatalog. I’ll confess to being unclear about the details of how that works, for example in the case of data that just doesn’t fit well into flat relational tables. Stay tuned for future posts. For now, I’ll just note that:
- HCatalog is closely based on Hive’s metadata management. If you’ve run Hive against the data, HCatalog should already know about it.
- HCatalog can handle Pig and HBase data as well.
- Write SQL DDL (Data Description Language) so that your Aster cluster knows about the data.
- Write any Teradata Aster SQL/MR against that data. Some of the execution will be done on the Hadoop cluster, but pulling data back into Aster may well be necessary.
At least in theory, Teradata SQL-H lets you use a full set of analytic tools against your Hadoop data, with little limitation except price and/or performance. Teradata thinks the performance of all this can be much better than if you just use Hadoop (35X was mentioned in one particularly favorable example), but perhaps much worse than if you just copy/extract the data to an Aster cluster in the first place.
So what might the use cases be for something like SQL-H? Offhand, I’d say:
- SQL-H use cases are probably focused in areas where copying the data to Aster in advance doesn’t make a lot of sense. So presumably …
- … the Hadoop clusters involved would hold a lot more data than you’d want to pay for storing in Teradata Aster. E.g., think of cases where Hadoop is used as a big bit bucket or archival data store.
- There could be a kind of investigative workflow. First you play around with the Hadoop data via SQL-H. Then when you think you’re onto something, you set up ETL (Extract/Transform/Load) to get the data into Aster and ratchet up the effort.
By way of contrast, the whole thing makes less sense for dashboarding kinds of uses, unless the dashboard users are very patient when they want to drill down.
Hadapt is moving forward
I’ve talked with my clients at Hadapt a couple of times recently. News highlights include:
- The Hadapt 1.0 product is going “Early Access” today.
- General availability of Hadapt 1.0 is targeted for an officially unspecified time frame, but it’s soon.
- Hadapt raised a nice round of venture capital.
- Hadapt added Sharmila Mulligan to the board.
- Dave Kellogg is in the picture too, albeit not as involved as Sharmila.
- Hadapt has moved the company to Cambridge, which is preferable to Yale environs for obvious reasons. (First location = space they’re borrowing from their investors at Bessemer.)
- Headcount is in the low teens, with a target of doubling fast.
The Hadapt product story hasn’t changed significantly from what it was before. Specific points I can add include: Read more
Categories: Hadapt, Hadoop, MapReduce, PostgreSQL, SQL/Hadoop integration, Theory and architecture, Workload management | 6 Comments |
Hadapt update
I met with the Hadapt guys today. I think I can be a bit crisper than before in positioning Hadapt and its use cases, namely:
- Hadapt is additional software on a cluster that also runs fully functional Hadoop/HDFS. (Cloudera Hadoop more than straight-from-Apache Hadoop to date, but that’s not a requirement.)
- The cluster also runs a DBMS on every node, such as PostgreSQL or one of Infobright/Vectorwise.
- Hadapt’s software manages parallel SQL queries by distributing them to the DBMS living on each node. Hadapt says that the resulting query performance far outshines Hive’s.
- Hadapt further says that, by exploiting the partner DBMS, its SQL functionality outpaces Hive’s as well.
- Target Hadapt use cases are centered around keeping machine-generated or other poly-structured data in Hadoop, and extracting, enhancing, or otherwise deriving some of it to live in the relational store.
- In particular, Hadapt seems like an interesting choice when you want to use that relational data as you work on other data that’s still in HDFS, or if you want to keep using the relational data in other kinds of MapReduce jobs.
- That all fits well with my thoughts about the importance of derived data.
Other evolution from what I wrote about Hadapt a few months ago includes:
- Hadapt is in beta now.
- Hadapt has added adult supervision in the form of Philip Wickline, late of Endeca.
In other news, Hadapt is our newest client.
Hadapt (commercialized HadoopDB)
The HadoopDB company Hadapt is finally launching, based on the HadoopDB project, albeit with code rewritten from scratch. As you may recall, the core idea of HadoopDB is to put a DBMS on every node, and use MapReduce to talk to the whole database. The idea is to get the same SQL/MapReduce integration as you get if you use Hive, but with much better performance* and perhaps somewhat better SQL functionality.** Advantages vs. a DBMS-based analytic platform that includes MapReduce — e.g. Aster Data — are less clear. Read more
Vertica-Hadoop integration
DBMS/Hadoop integration is a confusing subject. My post on the Cloudera/Aster Data partnership awaits some clarification in the comment thread. A conversation with Vertica left me unsure about some Hadoop/Vertica Year 2 details as well, although I’m doing better after a follow-up call. On the plus side, we also covered some rather cool Hadoop/Vertica product futures, and those seemed easier to understand. 🙂
I say “Year 2” because Hadoop/Vertica integration has been going on since last year. Indeed, Vertica says that there are now over 25 users of the Hadoop/Vertica combination and hence Vertica’s Hadoop connector. Vertica is now introducing — for immediate GA — a new version of its Hadoop connector. So far as I understood: Read more