Database compression
Analysis of technology that compresses data within a database management system. Related subjects include:
MemSQL 3.0
Memory-centric data management is confusing. And so I’m going to clarify a couple of things about MemSQL 3.0 even though I don’t yet have a lot of details.* They are:
- MemSQL has historically been an in-memory row store, which as of last year scales out.
- It turns out that the MemSQL row store actually has two table types. One is scaled out. The other — called “reference” — is replicated on every node.
- MemSQL has now added a third table type, which is columnar and which resides in flash memory.
- If you want to keep data in, for example, both the scale-out row store and the column store, you’d have to copy/replicate it within MemSQL. And if you wanted to access data from both versions at once (e.g. because different copies cover different time periods), you’d likely have to do a UNION or something like that.
*MemSQL’s first columnar offering sounds pretty basic; for example, there’s no columnar compression yet. (Edit: Oops, that’s not accurate. See comment below.) But at least they actually have one, which puts them ahead of many other row-based RDBMS vendors that come to mind.
And to hammer home the contrast:
- IBM, Oracle and Microsoft, which all sell row-based DBMS meant to run on disk or other persistent storage, have added or will add columnar options that run in RAM.
- MemSQL, which sells a row-based DBMS that runs in RAM, has added a columnar option that runs in persistent solid-state storage.
Categories: Columnar database management, Database compression, In-memory DBMS, MemSQL, Solid-state memory | 12 Comments |
Tokutek’s interesting indexing strategy
The general Tokutek strategy has always been:
- Write indexes efficiently, which …
- … makes it reasonable to have more indexes, which …
- … lets more queries run fast.
But the details of “writes indexes efficiently” have been hard to nail down. For example, my post about Tokutek indexing last January, while not really mistaken, is drastically incomplete.
Adding further confusion is that Tokutek now has two product lines:
- TokuDB, a MySQL storage engine.
- TokuMX, in which the parts of MongoDB 2.2 that roughly equate to a storage engine are ripped out and replaced with Tokutek code.
TokuMX further adds language support for transactions and a rewrite of MongoDB’s replication code.
So let’s try again. I had a couple of conversations with Martin Farach-Colton, who:
- Is a Tokutek co-founder.
- Stayed in academia.
- Is a data structures guy, not a database expert per se.
The core ideas of Tokutek’s architecture start: Read more
Categories: Database compression, MongoDB, MySQL, NewSQL, Tokutek and TokuDB | 4 Comments |
Hortonworks, Hadoop, Stinger and Hive
I chatted yesterday with the Hortonworks gang. The main subject was Hortonworks’ approach to SQL-on-Hadoop — commonly called Stinger — but at my request we cycled through a bunch of other topics as well. Company-specific notes include:
- Hortonworks founder J. Eric “Eric14” Baldeschwieler is no longer at Hortonworks, although I imagine he stays closely in touch. What he’s doing next is unspecified, except by the general phrase “his own thing”. (Derrick Harris has more on Eric’s departure.)
- John Kreisa still is at Hortonworks, just not as marketing VP. Think instead of partnerships and projects.
- ~250 employees.
- ~70-75 subscription customers.
Our deployment and use case discussions were a little confused, because a key part of Hortonworks’ strategy is to support and encourage the idea of combining use cases and workloads on a single cluster. But I did hear:
- 10ish nodes for a typical starting cluster.
- 100ish nodes for a typical “data lake” committed adoption.
- Teradata UDA (Unified Data Architecture)* customers sometimes (typically?) jumping straight to a data lake scenario.
- A few users in the 10s of 1000s of nodes. (Obviously Yahoo is one.)
- HBase used in >50% of installations.
- Hive probably even more than that.
- Hortonworks is seeing a fair amount of interest in Windows Hadoop deployments.
*By the way — Teradata seems serious about pushing the UDA as a core message.
Ecosystem notes, in Hortonworks’ perception, included:
- Cloudera is obviously Hortonworks’ biggest distro competitor. Next is IBM, presumably in its blue-forever installed base. MapR is barely on the radar screen; Pivotal’s likely rise hasn’t yet hit sales reports.
- Hortonworks evidently sees a lot of MicroStrategy and Tableau, and some Platfora and Datameer, the latter two at around the same level of interest.
- Accumulo is a big deal in the Federal government, and has gotten a few health care wins as well. Its success is all about security. (Note: That’s all consistent with what I hear elsewhere.)
I also asked specifically about OpenStack. Hortonworks is a member of the OpenStack project, contributes nontrivially to Swift and other subprojects, and sees Rackspace as an important partner. But despite all that, I think strong Hadoop/OpenStack integration is something for the indefinite future.
Hortonworks’ views about Hadoop 2.0 start from the premise that its goal is to support running a multitude of workloads on a single cluster. (See, for example, what I previously posted about Tez and YARN.) Timing notes for Hadoop 2.0 include:
- It’s been in preview/release candidate/commercial beta mode for weeks.
- Q3 is the goal; H2 is the emphatic goal.
- Yahoo’s been in production with YARN >8 months, and has no MapReduce 1 clusters left. (Yahoo has >35,000 Hadoop nodes.)
- The last months of delays have been mainly about sprucing up various APIs and protocols, which may need to serve for a similar multi-year period as Hadoop 1’s have. But there also was some YARN stabilization into May.
Frankly, I think Cloudera’s earlier and necessarily incremental Hadoop 2 rollout was a better choice than Hortonworks’ later big bang, even though the core-mission aspect of Hadoop 2.0 is what was least ready. HDFS (Hadoop Distributed File System) performance, NameNode failover and so on were well worth having, and it’s more than a year between Cloudera starting supporting them and when Hortonworks is offering Hadoop 2.0.
Hortonworks’ approach to doing SQL-on-Hadoop can be summarized simply as “Make Hive into as good an analytic RDBMS as possible, all in open source”. Key elements include: Read more
Impala and Parquet
I visited Cloudera Friday for, among other things, a chat about Impala with Marcel Kornacker and colleagues. Highlights included:
- Impala is meant to someday be a competitive MPP (Massively Parallel Processing) analytic RDBMS.
- At the moment, it is not one. For example, Impala lacks any meaningful form of workload management or query optimization.
- While Impala will run against any HDFS (Hadoop Distributed File System) file format, claims of strong performance assume that the data is in Parquet …
- … which is the replacement for the short-lived Trevni …
- … and which for most practical purposes is true columnar.
- Impala is also meant to be more than an RDBMS; Parquet and presumably in the future Impala can accommodate nested data structures.
- Just as Impala runs against most or all HDFS file formats, Parquet files can be used by most Hadoop execution engines, and of course by Pig and Hive.
- The Impala roadmap includes workload management, query optimization, data skipping, user-defined functions, hash distribution, two turtledoves, and a partridge in a pear tree.
Data gets into Parquet via batch jobs only — one reason it’s important that Impala run against multiple file formats — but background format conversion is another roadmap item. A single table can be split across multiple formats — e.g., the freshest data could be in HBase, with the rest is in Parquet.
IBM BLU
I had a good chat with IBM about IBM BLU, aka BLU Accelerator or Acceleration. BLU basics start:
- BLU is a part of DB2.
- BLU works like a columnar analytic DBMS.
- If you want to do a join combining BLU and non-BLU tables, all the BLU tables are joined first, and the result set is joined to the other tables by the rest of DB2.
And yes — that means Oracle is now the only major relational DBMS vendor left without a true columnar story.
BLU’s maturity and scalability basics start:
- BLU is coming out in IBM DB2 10.5, this quarter.
- BLU will initially be single-server, but …
- … IBM claims “near-linear” scalability up to 64 cores, and further says that …
- … scale-out for BLU is coming “soon”.
- IBM already thinks all your analytically-oriented DB2 tables should be in BLU.
- IBM describes the first version of BLU as being optimized for 10 TB databases, but capable of handling 20 TB.
BLU technical highlights include: Read more
Categories: Columnar database management, Data pipelining, Data warehousing, Database compression, IBM and DB2, Workload management | 20 Comments |
MemSQL scales out
The third of my three MySQL-oriented clients I alluded to yesterday is MemSQL. When I wrote about MemSQL last June, the product was an in-memory single-server MySQL workalike. Now scale-out has been added, with general availability today.
MemSQL’s flagship reference is Zynga, across 100s of servers. Beyond that, the company claims (to quote a late draft of the press release):
Enterprises are already using distributed MemSQL in production for operational analytics, network security, real-time recommendations, and risk management.
All four of those use cases fit MemSQL’s positioning in “real-time analytics”. Besides Zynga, MemSQL cites penetration into traditional low-latency markets — financial services (various subsectors) and ad-tech.
Highlights of MemSQL’s new distributed architecture start: Read more
Introduction to Deep Information Sciences and DeepDB
I talked Friday with Deep Information Sciences, makers of DeepDB. Much like TokuDB — albeit with different technical strategies — DeepDB is a single-server DBMS in the form of a MySQL engine, whose technology is concentrated around writing indexes quickly. That said:
- DeepDB’s indexes can help you with analytic queries; hence, DeepDB is marketed as supporting OLTP (OnLine Transaction Processing) and analytics in the same system.
- DeepDB is marketed as “designed for big data and the cloud”, with reference to “Volume, Velocity, and Variety”. What I could discern in support of that is mainly:
- DeepDB has been tested at up to 3 terabytes at customer sites and up to 1 billion rows internally.
- Like most other NewSQL and NoSQL DBMS, DeepDB is append-only, and hence could be said to “stream” data to disk.
- DeepDB’s indexes could at some point in the future be made to work well with non-tabular data.*
- The Deep guys have plans and designs for scale-out — transparent sharding and so on.
*For reasons that do not seem closely related to product reality, DeepDB is marketed as if it supports “unstructured” data today.
Other NewSQL DBMS seem “designed for big data and the cloud” to at least the same extent DeepDB is. However, if we’re interpreting “big data” to include multi-structured data support — well, only half or so of the NewSQL products and companies I know of share Deep’s interest in branching out. In particular:
- Akiban definitely does. (Note: Stay tuned for some next-steps company news about Akiban.)
- Tokutek has planted a small stake there too.
- Key-value-store-backed NuoDB and GenieDB probably leans that way. (And SanDisk evidently shut down Schooner’s RDBMS while keeping its key-value store.)
- VoltDB, Clustrix, ScaleDB and MemSQL seem more strictly tabular, except insofar as text search is a requirement for everybody. (Edit: Oops; I forgot about Clustrix’s approach to JSON support.)
Edit: MySQL has some sort of an optional NoSQL interface, and hence so presumably do MySQL-compatible TokuDB, GenieDB, Clustrix, and MemSQL.
Also, some of those products do not today have the transparent scale-out that Deep plans to offer in the future.
DBMS development and other subjects
The cardinal rules of DBMS development
Rule 1: Developing a good DBMS requires 5-7 years and tens of millions of dollars.
That’s if things go extremely well.
Rule 2: You aren’t an exception to Rule 1.
In particular:
- Concurrent workloads benchmarked in the lab are poor predictors of concurrent performance in real life.
- Mixed workload management is harder than you’re assuming it is.
- Those minor edge cases in which your Version 1 product works poorly aren’t minor after all.
DBMS with Hadoop underpinnings …
… aren’t exceptions to the cardinal rules of DBMS development. That applies to Impala (Cloudera), Stinger (Hortonworks), and Hadapt, among others. Fortunately, the relevant vendors seem to be well aware of this fact. Read more
One database to rule them all?
Perhaps the single toughest question in all database technology is: Which different purposes can a single data store serve well? — or to phrase it more technically — Which different usage patterns can a single data store support efficiently? Ted Codd was on multiple sides of that issue, first suggesting that relational DBMS could do everything and then averring they could not. Mike Stonebraker too has been on multiple sides, first introducing universal DBMS attempts with Postgres and Illustra/Informix, then more recently suggesting the world needs 9 or so kinds of database technology. As for me — well, I agreed with Mike both times. 🙂
Since this is MUCH too big a subject for a single blog post, what I’ll do in this one is simply race through some background material. To a first approximation, this whole discussion is mainly about data layouts — but only if we interpret that concept broadly enough to comprise:
- Every level of storage (disk, RAM, etc.).
- Indexes, aggregates and raw data alike.
To date, nobody has ever discovered a data layout that is efficient for all usage patterns. As a general rule, simpler data layouts are often faster to write, while fancier ones can boost query performance. Specific tradeoffs include, but hardly are limited to: Read more
Notes and links, February 17, 2013
1. It boggles my mind that some database technology companies still don’t view compression as a major issue. Compression directly affects storage and bandwidth usage alike — for all kinds of storage (potentially including RAM) and for all kinds of bandwidth (network, I/O, and potentially on-server).
Trading off less-than-maximal compression so as to minimize CPU impact can make sense. Having no compression at all, however, is an admission of defeat.
2. People tend to misjudge Hadoop’s development pace in either of two directions. An overly expansive view is to note that some people working on Hadoop are trying to make it be all things for all people, and to somehow imagine those goals will soon be achieved. An overly narrow view is to note an important missing feature in Hadoop, and think there’s a big business to be made out of offering it alone.
At this point, I’d guess that Cloudera and Hortonworks have 500ish employees combined, many of whom are engineers. That allows for a low double-digit number of 5+ person engineering teams, along with a number of smaller projects. The most urgently needed features are indeed being built. On the other hand, a complete monument to computing will not soon emerge.
3. Schooner’s acquisition by SanDisk has led to the discontinuation of Schooner’s SQL DBMS SchoonerSQL. Schooner’s flash-optimized key-value store Membrain continues. I don’t have details, but the Membrain web page suggests both data store and cache use cases.
4. There’s considerable personnel movement at Boston-area database technology companies right now. Please ping me directly if you care.