Data models and architecture

Discussion of issues in data modeling, and whether databases should be consolidated or loosely coupled. Related subjects include:

October 23, 2012

Introduction to Platfora

When I wrote last week that I have at least 5 clients claiming they’re uniquely positioned to support BI over Hadoop (most of whom partner with a 6th client, Tableau) the non-partnering exception I had in mind was Platfora, Ben Werther’s oh-so-stealthy startup that is finally de-stealthing today. Platfora combines:

The whole thing sounds like a perhaps more general and certainly non-SaaS version of what Metamarkets has been offering for a while.

The Platfora technical story starts: Read more

October 16, 2012

Hadapt Version 2

My clients at Hadapt are coming out with a Version 2 to be available in Q1 2013, and perhaps slipstreaming some of the features before then. At that point, it will be reasonable to regard Hadapt as offering:

Solr is in the mix as well.

Hadapt+Hadoop is positioned much more as “better than Hadoop” than “a better scale-out RDBMS”– and rightly so, due to its limitations when viewed strictly from an analytic RDBMS standpoint. I.e., Hadapt is meant for enterprises that want to do several of:

Hadapt has 6 or so production customers, a dozen or so more coming online soon, 35 or so employees (mainly in Cambridge or Poland), reasonable amounts of venture capital, and the involvement of a variety of industry luminaries. Hadapt’s biggest installation seems to have 10s of terabytes of relational data and 100s of TBs of multi-structured; Hadapt is very confident in its ability to scale an order of magnitude beyond that with the Version 2 product, and reasonably confident it could go even further.

At the highest level, Hadapt works like this: Read more

October 12, 2012

(Relational) database (management system) — three analytic glossary draft entries

These are three closely-related draft entries for the DBMS2 analytic glossary. Please comment with any ideas you have for their improvement!

1. Database management system (DBMS)

In our definition, a database management system (DBMS) is:

Commonly, that API takes the form of a data manipulation language (DML) such as SQL or MDX, but our definition allows for APIs as simple as those of key-value stores.

There are two major alternatives to our definition:

  1. The above could be a definition of “data management software”, with the term “DBMS” reserved for systems with a true DML.
  2. Many vendors and industry observers abbreviate “database management system” or “data management software” as “database”.

Two important distinctions among categories of DBMS and the processing they’re optimized for are:

2. Database

The term database has two common meanings in IT: Read more

August 7, 2012

Notes on some basic database terminology

In a call Monday with a prominent company, I was told:

That, to put it mildly, is not accurate. So I shall try, yet again, to set the record straight.

In an industry where people often call a DBMS just a “database” — so that a database is something that manages a database! — one may wonder why I bother. Anyhow …

1. The products commonly known as Oracle, Exadata, DB2, Sybase, SQL Server, Teradata, Sybase IQ, Netezza, Vertica, Greenplum, Aster, Infobright, SAND, ParAccel, Exasol, Kognitio et al. all either are or incorporate relational database management systems, aka RDBMS or relational DBMS.

2. In principle, there can be difficulties in judging whether or not a DBMS is “relational”. In practice, those difficulties don’t arise — yet. Every significant DBMS still falls into one of two categories:

*I expect the distinction to get more confusing soon, at which point I’ll adopt terms more precise than “relational things” and “relational stuff”.

3. There are two chief kinds of relational DBMS: Read more

July 24, 2012

Notes on Datameer

In a short October, 2011 post about Datameer, I wrote:

Datameer is designed to let you do simple stuff on large amounts of data, where “large amounts of data” typically means data in Hadoop, and “simple stuff” includes basic versions of a spreadsheet, of BI, and of EtL (Extract/Transform/Load, without much in the way of T).

That’s all still mainly true, although with the recent Datameer 2.0:

In essence, Datameer has two positionings.

Read more

July 12, 2012

Approximate query results

In theory:

And so it would seem that query results always have to be exact. Even so, there are at least four different practical scenarios in which query results can reasonably be regarded as approximate, each associated with query languages that can supersede standard set-theoretic SQL.

Actually, there’s a fifth, and it’s a huge one — some fraction of your data is just plain wrong. But that’s not what this post is about.

First, some queries don’t have binary results, even in principle. Notably, text queries are answered via relevancy rankings, which fit badly into the relational model.

Second — and this can be combined with the first — you might want to generalize the query to look for partial matches. For example, Yarcdata suggested to me a scenario in which:

Similarly, if you’re looking for geographic proximity, it’s common to extend the allowed radius to fish for more results. Or one can walk up the hierarchy in a dimensional model.

Third, sometimes you just don’t have the data for any kind of precise answer at all. One adaptation I’ve mentioned before is to interpolate time series with synthetic data, and send back “precise” results based on that. In the same post I mentioned the Vertica “range join”, wherein users deliberately throw away part of their data — only storing the range it was in — and then join accordingly.

As Donald Rumsfeld might have said — and would have done well to reflect upon — you go into decision-making with the data you have, not the data you wish you had.

Finally, sometimes there’s a precise answer in principle, but for performance reasons you accept an approximate one, at least to start with. Numerous companies have told me stories around this, including:

The latter two categories led me to ask vendors how customers actually make use of their exotic SQL capabilities. Answers boiled down to:

Perhaps the answers will never get much better; it’s tough to get packaged software vendors to support vendor-specific SQL, unless the vendor is Oracle. Even so, we’re seeing ever more ways in which conventional SQL DBMS are being superseded by data management and analytic alternatives.

July 8, 2012

Database diversity revisited

From time to time, I try to step back and build a little taxonomy for the variety in database technology. One effort was 4 1/2 years ago, in a pre-planned exchange with Mike Stonebraker (his side, alas, has since been taken down). A year ago I spelled out eight kinds of analytic database.

The angle I’ll take this time is to say that every sufficiently large enterprise needs to be cognizant of at least 7 kinds of database challenge. General notes on that include:

The Big Seven database challenges that almost any enterprise faces are: Read more

July 2, 2012

Introduction to Yarcdata

Cray’s strategy these days seems to be:

At the moment, the main diversifications are:

The last of the three is what Cray subsidiary Yarcdata is all about. Read more

June 16, 2012

Metamarkets Druid overview

This is part of a three-post series:

My clients at Metamarkets are planning to open source part of their technology, called Druid, which is described in the Druid section of Metamarkets’ blog. The timing of when this will happen is a bit unclear; I know the target date under NDA, but it’s not set in stone. But if you care, you can probably contact the company to get involved earlier than the official unveiling.

I imagine that open-source Druid will be pretty bare-bones in its early days. Code was first checked in early in 2011, and Druid seems to have averaged around 1 full-time developer since then. What’s more, it’s not obvious that all the features I’m citing here will be open-sourced; indeed, some of the ones I’m describing probably won’t be.

In essence, Druid is a distributed analytic DBMS. Druid’s design choices are best understood when you recall that it was invented to support Metamarkets’ large-scale, RAM-speed, internet marketing/personalization SaaS (Software as a Service) offering. In particular:

Interestingly, the single-table/multi-valued choice is echoed at WibiData, which deals with similar data sets. However, WibiData’s use cases are different from Metamarkets’, and in most respects the WibiData architecture is quite different from that of Metamarkets/Druid.

Read more

June 16, 2012

Introduction to Metamarkets and Druid

I previously dropped a few hints about my clients at Metamarkets, mentioning that they:

But while they’re a joy to talk with, writing about Metamarkets has been frustrating, with many hours and pages of wasted of effort. Even so, I’m trying again, in a three-post series:

Much like Workday, Inc., Metamarkets is a SaaS (Software as a Service) company, with numerous tiers of servers and an affinity for doing things in RAM. That’s where most of the similarities end, however, as  Metamarkets is a much smaller company than Workday, doing very different things.

Metamarkets’ business is SaaS (Software as a Service) business intelligence, on large data sets, with low latency in both senses (fresh data can be queried on, and the queries happen at RAM speed). As you might imagine, Metamarkets is used by digital marketers and other kinds of internet companies, whose data typically wants to be in the cloud anyway. Approximate metrics for Metamarkets (and it may well have exceeded these by now) include 10 customers, 100,000 queries/day, 80 billion 100-byte events/month (before summarization), 20 employees, 1 popular CEO, and a metric ton of venture capital.

To understand how Metamarkets’ technology works, it probably helps to start by realizing: Read more

← Previous PageNext Page →

Feed: DBMS (database management system), DW (data warehousing), BI (business intelligence), and analytics technology Subscribe to the Monash Research feed via RSS or email:

Login

Search our blogs and white papers

Monash Research blogs

User consulting

Building a short list? Refining your strategic plan? We can help.

Vendor advisory

We tell vendors what's happening -- and, more important, what they should do about it.

Monash Research highlights

Learn about white papers, webcasts, and blog highlights, by RSS or email.