Data models and architecture
Discussion of issues in data modeling, and whether databases should be consolidated or loosely coupled. Related subjects include:
Introduction to Platfora
When I wrote last week that I have at least 5 clients claiming they’re uniquely positioned to support BI over Hadoop (most of whom partner with a 6th client, Tableau) the non-partnering exception I had in mind was Platfora, Ben Werther’s oh-so-stealthy startup that is finally de-stealthing today. Platfora combines:
- An interesting approach to analytic data management.
- Business intelligence tools integrated with that.
The whole thing sounds like a perhaps more general and certainly non-SaaS version of what Metamarkets has been offering for a while.
The Platfora technical story starts: Read more
Categories: Business intelligence, Columnar database management, Data models and architecture, Data warehousing, Database compression, Hadoop, Memory-centric data management, Platfora | 6 Comments |
Hadapt Version 2
My clients at Hadapt are coming out with a Version 2 to be available in Q1 2013, and perhaps slipstreaming some of the features before then. At that point, it will be reasonable to regard Hadapt as offering:
- A very tight integration between an RDBMS-based analytic platform and Hadoop …
- … that is decidedly immature as an analytic RDBMS …
- … but which strongly improves the SQL capabilities of Hadoop (vs., say, the alternative of using Hive).
Solr is in the mix as well.
Hadapt+Hadoop is positioned much more as “better than Hadoop” than “a better scale-out RDBMS”– and rightly so, due to its limitations when viewed strictly from an analytic RDBMS standpoint. I.e., Hadapt is meant for enterprises that want to do several of:
- Dump multi-structured data into Hadoop.
- Refine or just move some of it into an RDBMS.
- Bring in data from other RDBMS.
- Process of all the above via Hadoop MapReduce.
- Process of all the above via SQL.
- Use full-text indexes on the data.
Hadapt has 6 or so production customers, a dozen or so more coming online soon, 35 or so employees (mainly in Cambridge or Poland), reasonable amounts of venture capital, and the involvement of a variety of industry luminaries. Hadapt’s biggest installation seems to have 10s of terabytes of relational data and 100s of TBs of multi-structured; Hadapt is very confident in its ability to scale an order of magnitude beyond that with the Version 2 product, and reasonably confident it could go even further.
At the highest level, Hadapt works like this: Read more
(Relational) database (management system) — three analytic glossary draft entries
These are three closely-related draft entries for the DBMS2 analytic glossary. Please comment with any ideas you have for their improvement!
1. Database management system (DBMS)
In our definition, a database management system (DBMS) is:
- Software that manages the reading and writing of data …
- … through an application programming interface (API) …
- … that depends solely upon the values of the data and similar logical information.
Commonly, that API takes the form of a data manipulation language (DML) such as SQL or MDX, but our definition allows for APIs as simple as those of key-value stores.
There are two major alternatives to our definition:
- The above could be a definition of “data management software”, with the term “DBMS” reserved for systems with a true DML.
- Many vendors and industry observers abbreviate “database management system” or “data management software” as “database”.
Two important distinctions among categories of DBMS and the processing they’re optimized for are:
- Relational vs. non-relational
- Short-request vs. analytic vs. general-purpose
2. Database
The term database has two common meanings in IT: Read more
Categories: Analytic glossary, Data models and architecture | 3 Comments |
Notes on some basic database terminology
In a call Monday with a prominent company, I was told:
- Teradata, Netezza, Greenplum and Vertica aren’t relational.
- Teradata, Netezza, Greenplum and Vertica are all data warehouse appliances.
That, to put it mildly, is not accurate. So I shall try, yet again, to set the record straight.
In an industry where people often call a DBMS just a “database” — so that a database is something that manages a database! — one may wonder why I bother. Anyhow …
1. The products commonly known as Oracle, Exadata, DB2, Sybase, SQL Server, Teradata, Sybase IQ, Netezza, Vertica, Greenplum, Aster, Infobright, SAND, ParAccel, Exasol, Kognitio et al. all either are or incorporate relational database management systems, aka RDBMS or relational DBMS.
2. In principle, there can be difficulties in judging whether or not a DBMS is “relational”. In practice, those difficulties don’t arise — yet. Every significant DBMS still falls into one of two categories:
- Relational:
- Was designed to do relational stuff* from the get-go, even if it now does other things too.
- Supports a lot of SQL.
- Non-relational:
- Was designed primarily to do non-relational things.*
- Doesn’t support all that much SQL.
*I expect the distinction to get more confusing soon, at which point I’ll adopt terms more precise than “relational things” and “relational stuff”.
3. There are two chief kinds of relational DBMS: Read more
Notes on Datameer
In a short October, 2011 post about Datameer, I wrote:
Datameer is designed to let you do simple stuff on large amounts of data, where “large amounts of data” typically means data in Hadoop, and “simple stuff” includes basic versions of a spreadsheet, of BI, and of EtL (Extract/Transform/Load, without much in the way of T).
That’s all still mainly true, although with the recent Datameer 2.0:
- You can run Datameer and the underlying Hadoop on a desktop or workgroup group.
- There are some infographics pretty-picture-drawing capabilities, which will surely delight those who like vector-based HTML 5 pictures of coffee cups, saucers and macaroons.
- No doubt Datameer has been generally enhanced on multiple fronts.
In essence, Datameer has two positionings.
- One is “OK, you’ve got Hadoop — now wouldn’t you like to do something useful with it?” That can include both business intelligence and ETL.
- Beyond that, Datameer founder/CEO Stefan Groschupf’s core argument is that schema-on-read is really, really useful, even at the cost of absorbing a potentially large performance hit. In other words, he’s making a case for a form of non-relational BI.
Categories: Business intelligence, Data models and architecture, Datameer, EAI, EII, ETL, ELT, ETLT, Hadoop, Log analysis, Market share and customer counts, Web analytics | 8 Comments |
Approximate query results
In theory:
- A database query is a predicate.
- A DBMS matches the data it manages against the predicate and send back those records for which the predicate is true.
And so it would seem that query results always have to be exact. Even so, there are at least four different practical scenarios in which query results can reasonably be regarded as approximate, each associated with query languages that can supersede standard set-theoretic SQL.
Actually, there’s a fifth, and it’s a huge one — some fraction of your data is just plain wrong. But that’s not what this post is about.
First, some queries don’t have binary results, even in principle. Notably, text queries are answered via relevancy rankings, which fit badly into the relational model.
Second — and this can be combined with the first — you might want to generalize the query to look for partial matches. For example, Yarcdata suggested to me a scenario in which:
- You do a SPARQL query.
- You modify the query to accept results higher up in the taxonomy. (Which is likely to be possible, because where there’s SPARQL, there’s apt to be a taxonomy as well.) For example, if you really want to query on two people living in the house, you might extend the query to cover two people connected by any kind of address or building.
Similarly, if you’re looking for geographic proximity, it’s common to extend the allowed radius to fish for more results. Or one can walk up the hierarchy in a dimensional model.
Third, sometimes you just don’t have the data for any kind of precise answer at all. One adaptation I’ve mentioned before is to interpolate time series with synthetic data, and send back “precise” results based on that. In the same post I mentioned the Vertica “range join”, wherein users deliberately throw away part of their data — only storing the range it was in — and then join accordingly.
As Donald Rumsfeld might have said — and would have done well to reflect upon — you go into decision-making with the data you have, not the data you wish you had.
Finally, sometimes there’s a precise answer in principle, but for performance reasons you accept an approximate one, at least to start with. Numerous companies have told me stories around this, including:
- Infobright, whose “Rough Query” gives fast approximate results to a broad range of queries.
- Metamarkets, which does fast cardinality estimates via HyperLogLog.
- Aster Data, which was the first company to point out to me that median, decile, quintile, and so on calculations are a lot faster in a shared-nothing setting if you’re willing to settle for approximate results.
The latter two categories led me to ask vendors how customers actually make use of their exotic SQL capabilities. Answers boiled down to:
- (Always) Well, there’s a lot of custom coding.
- (Sometimes) We’re working with partner BI vendors to make direct use of the capabilities, but that’s not done yet, so it’s too early to talk about any details.
Perhaps the answers will never get much better; it’s tough to get packaged software vendors to support vendor-specific SQL, unless the vendor is Oracle. Even so, we’re seeing ever more ways in which conventional SQL DBMS are being superseded by data management and analytic alternatives.
Categories: Aster Data, Business intelligence, Data models and architecture, Data warehousing, Database compression, Infobright, Text, Vertica Systems, Yarcdata and Cray | 3 Comments |
Database diversity revisited
From time to time, I try to step back and build a little taxonomy for the variety in database technology. One effort was 4 1/2 years ago, in a pre-planned exchange with Mike Stonebraker (his side, alas, has since been taken down). A year ago I spelled out eight kinds of analytic database.
The angle I’ll take this time is to say that every sufficiently large enterprise needs to be cognizant of at least 7 kinds of database challenge. General notes on that include:
- I’m using the weasel words “database challenge” to evade questions as to what is or isn’t exactly a DBMS.
- One “challenge” can call for multiple products and technologies even within a single enterprise, let alone at different ones. For example, in this post the “eight kinds of analytic database” are reduced to just a single category.
- Even so, one product or technology may be well-suited to address a couple different kinds of challenges.
The Big Seven database challenges that almost any enterprise faces are: Read more
Introduction to Yarcdata
Cray’s strategy these days seems to be:
- Move forward with the classic supercomputer business.
- Diversify into related areas.
At the moment, the main diversifications are:
- Boxes that are like supercomputers, but at a lower price point.
- Storage.
- “(Big) data”.
The last of the three is what Cray subsidiary Yarcdata is all about. Read more
Metamarkets Druid overview
This is part of a three-post series:
- Introduction to Metamarkets and Druid
- Druid overview (this post)
- Metamarkets’ back-end technology
My clients at Metamarkets are planning to open source part of their technology, called Druid, which is described in the Druid section of Metamarkets’ blog. The timing of when this will happen is a bit unclear; I know the target date under NDA, but it’s not set in stone. But if you care, you can probably contact the company to get involved earlier than the official unveiling.
I imagine that open-source Druid will be pretty bare-bones in its early days. Code was first checked in early in 2011, and Druid seems to have averaged around 1 full-time developer since then. What’s more, it’s not obvious that all the features I’m citing here will be open-sourced; indeed, some of the ones I’m describing probably won’t be.
In essence, Druid is a distributed analytic DBMS. Druid’s design choices are best understood when you recall that it was invented to support Metamarkets’ large-scale, RAM-speed, internet marketing/personalization SaaS (Software as a Service) offering. In particular:
- Druid tries to use RAM well.
- Druid tries to stay up all the time.
- Druid has multi-valued fields. (Numeric, but of course you can use encoding tricks to be effectively more general.)
- Druid’s big limitation is to assume that there’s literally only one (denormalized) table per query; you can’t even join to dimension tables.
- SQL is a bit of an afterthought; I would expect Druid’s SQL functionality to be pretty stripped-down out of the gate.
Interestingly, the single-table/multi-valued choice is echoed at WibiData, which deals with similar data sets. However, WibiData’s use cases are different from Metamarkets’, and in most respects the WibiData architecture is quite different from that of Metamarkets/Druid.
Introduction to Metamarkets and Druid
I previously dropped a few hints about my clients at Metamarkets, mentioning that they:
- Have built vertical-market analytic platform technology.
- Use a lot of Hadoop.
- Throw good parties. (That’s where the background photo on my Twitter page comes from.)
But while they’re a joy to talk with, writing about Metamarkets has been frustrating, with many hours and pages of wasted of effort. Even so, I’m trying again, in a three-post series:
- Introduction to Metamarkets and Druid (this post)
- Druid overview
- Metamarkets’ back-end technology
Much like Workday, Inc., Metamarkets is a SaaS (Software as a Service) company, with numerous tiers of servers and an affinity for doing things in RAM. That’s where most of the similarities end, however, as Metamarkets is a much smaller company than Workday, doing very different things.
Metamarkets’ business is SaaS (Software as a Service) business intelligence, on large data sets, with low latency in both senses (fresh data can be queried on, and the queries happen at RAM speed). As you might imagine, Metamarkets is used by digital marketers and other kinds of internet companies, whose data typically wants to be in the cloud anyway. Approximate metrics for Metamarkets (and it may well have exceeded these by now) include 10 customers, 100,000 queries/day, 80 billion 100-byte events/month (before summarization), 20 employees, 1 popular CEO, and a metric ton of venture capital.
To understand how Metamarkets’ technology works, it probably helps to start by realizing: Read more