Columnar database management
Analysis of products and issues in column-oriented database management systems. Related subjects include:
Generally available Kudu
I talked with Cloudera about Kudu in early May. Besides giving me a lot of information about Kudu, Cloudera also helped confirm some trends I’m seeing elsewhere, including:
- Security is an ever bigger deal.
- There’s a lot of interest in data warehouses (perhaps really data marts) that are updated in human real-time.
- Prospects for that respond well to the actual term “data warehouse”, at least when preceded by some modifier to suggest that it’s modern/low-latency/non-batch or whatever.
- Flash is often — but not yet always — preferred over disk for that kind of use.
- Sometimes these data stores are greenfield. When they’re migrations, they come more commonly from analytic RDBMS or data warehouse appliance (the most commonly mentioned ones are Teradata, Netezza and Vertica, but that’s perhaps just due to those product lines’ market share), rather than from general purpose DBMS such as Oracle or SQL Server.
- Intel is making it ever easier to vectorize CPU operations, and analytic data managers are increasingly taking advantage of this possibility.
Now let’s talk about Kudu itself. As I discussed at length in September 2015, Kudu is:
- A data storage system introduced by Cloudera (and subsequently open-sourced).
- Columnar.
- Updatable in human real-time.
- Meant to serve as the data storage tier for Impala and Spark.
Kudu’s adoption and roll-out story starts: Read more
Interana
Interana has an interesting story, in technology and business model alike. For starters:
- Interana does ad-hoc event series analytics, which they call “interactive behavioral analytics solutions”.
- Interana has a full-stack analytic offering, include:
- Its own columnar DBMS …
- … which has a non-SQL DML (Data Manipulation Language) meant to handle event series a lot more fluently than SQL does, but which the user is never expected to learn because …
- … there also are BI-like visual analytics tools that support plenty of drilldown.
- Interana sells all this to “product” departments rather than marketing, because marketing doesn’t sufficiently value Interana’s ad-hoc query flexibility.
- Interana boasts >40 customers, with annual subscription fees ranging from high 5 figures to low 7 digits.
And to be clear — if we leave aside any questions of marketing-name sizzle, this really is business intelligence. The closest Interana comes to helping with predictive modeling is giving its ad-hoc users inspiration as to where they should focus their modeling attention.
Interana also has an interesting twist in its business model, which I hope can be used successfully by other enterprise software startups as well. Read more
Introduction to Crate.io and CrateDB
Crate.io and CrateDB basics include:
- Crate.io makes CrateDB.
- CrateDB is a quasi-RDBMS designed to receive sensor data and similar IoT (Internet of Things) inputs.
- CrateDB’s creators were perhaps a little slow to realize that the “R” part was needed, but are playing catch-up in that regard.
- Crate.io is an outfit founded by Austrian guys, headquartered in Berlin, that is turning into a San Francisco company.
- Crate.io says it has 22 employees and 5 paying customers.
- Crate.io cites bigger numbers than that for confirmed production users, clearly active clusters, and overall product downloads.
In essence, CrateDB is an open source and less mature alternative to MemSQL. The opportunity for MemSQL and CrateDB alike exists in part because analytic RDBMS vendors didn’t close it off.
CrateDB’s not-just-relational story starts:
- A column can contain ordinary values (of usual-suspect datatypes) or “objects”, …
- … where “objects” presumably are the kind of nested/hierarchical structures that are common in the NoSQL/internet-backend world, …
- … except when they’re just BLOBs (Binary Large OBjects).
- There’s a way to manually define “strict schemas” on the structured objects, and a syntax for navigating their structure in WHERE clauses.
- There’s also a way to automagically infer “dynamic schemas”, but it’s simplistic enough to be more suitable for development/prototyping than for serious production.
Categories: Columnar database management, Data models and architecture, Databricks, Spark and BDAS, GIS and geospatial, MemSQL, NoSQL, Open source, Structured documents | 3 Comments |
Readings in Database Systems
Mike Stonebraker and Larry Ellison have numerous things in common. If nothing else:
- They’re both titanic figures in the database industry.
- They both gave me testimonials on the home page of my business website.
- They both have been known to use the present tense when the future tense would be more accurate. 🙂
I mention the latter because there’s a new edition of Readings in Database Systems, aka the Red Book, available online, courtesy of Mike, Joe Hellerstein and Peter Bailis. Besides the recommended-reading academic papers themselves, there are 12 survey articles by the editors, and an occasional response where, for example, editors disagree. Whether or not one chooses to tackle the papers themselves — and I in fact have not dived into them — the commentary is of great interest.
But I would not take every word as the gospel truth, especially when academics describe what they see as commercial market realities. In particular, as per my quip in the first paragraph, the data warehouse market has not yet gone to the extremes that Mike suggests,* if indeed it ever will. And while Joe is close to correct when he says that the company Essbase was acquired by Oracle, what actually happened is that Arbor Software, which made Essbase, merged with Hyperion Software, and the latter was eventually indeed bought by the giant of Redwood Shores.**
*When it comes to data warehouse market assessment, Mike seems to often be ahead of the trend.
**Let me interrupt my tweaking of very smart people to confess that my own commentary on the Oracle/Hyperion deal was not, in retrospect, especially prescient.
Mike pretty much opened the discussion with a blistering attack against hierarchical data models such as JSON or XML. To a first approximation, his views might be summarized as: Read more
Cloudera Kudu deep dive
This is part of a three-post series on Kudu, a new data storage system from Cloudera.
- Part 1 is an overview of Kudu technology.
- Part 2 (this post) is a lengthy dive into how Kudu writes and reads data.
- Part 3 is a brief speculation as to Kudu’s eventual market significance.
Let’s talk in more detail about how Kudu stores data.
- As previously noted, inserts land in an in-memory row store, which is periodically flushed to the column store on disk. Queries are federated between these two stores. Vertica taught us to call these the WOS (Write-Optimized Store) and ROS (Read-Optimized Store) respectively, and I’ll use that terminology here.
- Part of the ROS is actually another in-memory store, aka the DeltaMemStore, where updates and deletes land before being applied to the DiskRowSets. These stores are managed separately for each DiskRowSet. DeltaMemStores are checked at query time to confirm whether what’s in the persistent store is actually up to date.
- A major design goal for Kudu is that compaction should never block — nor greatly slow — other work. In support of that:
- Compaction is done, server-by-server, via a low-priority but otherwise always-on background process.
- There is a configurable maximum to how big a compaction process can be — more precisely, the limit is to how much data the process can work on at once. The current default figure = 128 MB, which is 4X the size of a DiskRowSet.
- When done, Kudu runs a little optimization to figure out which 128 MB to compact next.
- Every tablet has its own write-ahead log.
- This creates a practical limitation on the number of tablets …
- … because each tablet is causing its own stream of writes to “disk” …
- … but it’s only a limitation if your “disk” really is all spinning disk …
- … because multiple simultaneous streams work great with solid-state memory.
- Log retention is configurable, typically the greater of 5 minutes or 128 MB.
- Metadata is cached in RAM. Therefore:
- ALTER TABLE kinds of operations that can be done by metadata changes only — i.e. adding/dropping/renaming columns — can be instantaneous.
- To keep from being screwed up by this, the WOS maintains a column that labels rows by which schema version they were created under. I immediately called this MSCC — Multi-Schema Concurrency Control 🙂 — and Todd Lipcon agreed.
- Durability, as usual, boils down to “Wait until a quorum has done the writes”, with a configurable option as to what constitutes a “write”.
- Servers write to their respective write-ahead logs, then acknowledge having done so.
- If it isn’t too much of a potential bottleneck — e.g. if persistence is on flash — the acknowledgements may wait until the log has been fsynced to persistent storage.
- There’s a “thick” client library which, among other things, knows enough about the partitioning scheme to go straight to the correct node(s) on a cluster.
Categories: Cloudera, Columnar database management, Hadoop, Solid-state memory, SQL/Hadoop integration | 25 Comments |
Introduction to Cloudera Kudu
This is part of a three-post series on Kudu, a new data storage system from Cloudera.
- Part 1 (this post) is an overview of Kudu technology.
- Part 2 is a lengthy dive into how Kudu writes and reads data.
- Part 3 is a brief speculation as to Kudu’s eventual market significance.
Cloudera is introducing a new open source project, Kudu,* which from Cloudera’s standpoint is meant to eventually become the single best underpinning for analytics on the Hadoop stack. I’ve spent multiple hours discussing Kudu with Cloudera, mainly with Todd Lipcon. Any errors are of course entirely mine.
*Like the impala, the kudu is a kind of antelope. I knew that, because I enjoy word games. What I didn’t know — and which is germane to the naming choice — is that the kudu has stripes. 🙂
For starters:
- Kudu is an alternative to HDFS (Hadoop Distributed File System), or to HBase.
- Kudu is meant to be the underpinning for Impala, Spark and other analytic frameworks or engines.
- Kudu is not meant for OLTP (OnLine Transaction Processing), at least in any foreseeable release. For example:
- Kudu doesn’t support multi-row transactions.
- There are no active efforts to front-end Kudu with an engine that is fast at single-row queries.
- Kudu is rather columnar, except for transitory in-memory stores.
- Kudu’s core design points are that it should:
- Accept data very quickly.
- Immediately make that data available for analytics.
- More specifically, Kudu is meant to accept, along with slower forms of input:
- Lots of fast random writes, e.g. of web interactions.
- Streams, viewed as a succession of inserts.
- Updates and inserts alike.
- The core “real-time” use cases for which Kudu is designed are, unsurprisingly:
- Low-latency business intelligence.
- Predictive model scoring.
- Kudu is designed to work fine with spinning disk, and indeed has been tested to date mainly on disk-only nodes. Even so, Kudu’s architecture is optimized for the assumption that there will be at least some flash on the node.
- Kudu is designed primarily to support relational/SQL processing. However, Kudu also has a nested-data roadmap, which of course starts with supporting the analogous capabilities in Impala.
Teradata will support Presto
At the highest level:
- Presto is, roughly speaking, Facebook’s replacement for Hive, at least for queries that are supposed to run at interactive speeds.
- Teradata is announcing support for Presto with a classic open source pricing model.
- Presto will also become, roughly speaking, Teradata’s replacement for Hive.
- Teradata’s Presto efforts are being conducted by the former Hadapt.
Now let’s make that all a little more precise.
Regarding Presto (and I got most of this from Teradata)::
- To a first approximation, Presto is just another way to write SQL queries against HDFS (Hadoop Distributed File System). However …
- … Presto queries other data stores too, such as various kinds of RDBMS, and federates query results.
- Facebook at various points in time created both Hive and now Presto.
- Facebook started the Presto project in 2012 and now has 10 engineers on it.
- Teradata has named 16 engineers – all from Hadapt – who will be contributing to Presto.
- Known serious users of Presto include Facebook, Netflix, Groupon and Airbnb. Airbnb likes Presto well enough to have 1/3 of its employees using it, via an Airbnb-developed tool called Airpal.
- Facebook is known to have a cluster cited at 300 petabytes and 4000 users where Presto is presumed to be a principal part of the workload.
Daniel Abadi said that Presto satisfies what he sees as some core architectural requirements for a modern parallel analytic RDBMS project: Read more
MemSQL 4.0
I talked with my clients at MemSQL about the release of MemSQL 4.0. Let’s start with the reminders:
- MemSQL started out as in-memory OTLP (OnLine Transaction Processing) DBMS …
- … but quickly positioned with “We also do ‘real-time’ analytic processing” …
- … and backed that up by adding a flash-based column store option …
- … before Gartner ever got around to popularizing the term HTAP (Hybrid Transaction and Analytic Processing).
- There’s also a JSON option.
The main new aspects of MemSQL 4.0 are:
- Geospatial indexing. This is for me the most interesting part.
- A new optimizer and, I suppose, query planner …
- … which in particular allow for serious distributed joins.
- Some rather parallel-sounding connectors to Spark. Hadoop and Amazon S3.
- Usual-suspect stuff including:
- More SQL coverage (I forgot to ask for details).
- Some added or enhanced administrative/tuning/whatever tools (again, I forgot to ask for details).
- Surely some general Bottleneck Whack-A-Mole.
There’s also a new free MemSQL “Community Edition”. MemSQL hopes you’ll experiment with this but not use it in production. And MemSQL pricing is now wholly based on RAM usage, so the column store is quasi-free from a licensing standpoint is as well.
Teradata bought Hadapt and Revelytix
My client Teradata bought my (former) clients Revelytix and Hadapt.* Obviously, I’m in confidentiality up to my eyeballs. That said — Teradata truly doesn’t know what it’s going to do with those acquisitions yet. Indeed, the acquisitions are too new for Teradata to have fully reviewed the code and so on, let alone made strategic decisions informed by that review. So while this is just a guess, I conjecture Teradata won’t say anything concrete until at least September, although I do expect some kind of stated direction in time for its October user conference.
*I love my business, but it does have one distressing aspect, namely the combination of subscription pricing and customer churn. When your customers transform really quickly, or even go out of existence, so sometimes does their reliance on you.
I’ve written extensively about Hadapt, but to review:
- The HadoopDB project was started by Dan Abadi and two grad students.
- HadoopDB tied a bunch of PostgreSQL instances together with Hadoop MapReduce. Lab benchmarks suggested it was more performant than the coyly named DBx (where x=2), but not necessarily competitive with top analytic RDBMS.
- Hadapt was formed to commercialize HadoopDB.
- After some fits and starts, Hadapt was a Cambridge-based company. Former Vertica CEO Chris Lynch invested even before he was a VC, and became an active chairman. Not coincidentally, Hadapt had a bunch of Vertica folks.
- Hadapt decided to stick with row-based PostgreSQL, Dan Abadi’s previous columnar enthusiasm notwithstanding. Not coincidentally, Hadapt’s performance never blew anyone away.
- Especially after the announcement of Cloudera Impala, Hadapt’s SQL-on-Hadoop positioning didn’t work out. Indeed, Hadapt laid off most or all of its sales and marketing folks. Hadapt pivoted to emphasize its schema-on-need story.
- Chris Lynch, who generally seems to think that IT vendors are created to be sold, shopped Hadapt aggressively.
As for what Teradata should do with Hadapt: Read more
Categories: Aster Data, Citus Data, Cloudera, Columnar database management, Data warehousing, Hadapt, Hadoop, MapReduce, Oracle, SQL/Hadoop integration, Teradata | 8 Comments |
21st Century DBMS success and failure
As part of my series on the keys to and likelihood of success, I outlined some examples from the DBMS industry. The list turned out too long for a single post, so I split it up by millennia. The part on 20th Century DBMS success and failure went up Friday; in this one I’ll cover more recent events, organized in line with the original overview post. Categories addressed will include analytic RDBMS (including data warehouse appliances), NoSQL/non-SQL short-request DBMS, MySQL, PostgreSQL, NewSQL and Hadoop.
DBMS rarely have trouble with the criterion “Is there an identifiable buying process?” If an enterprise is doing application development projects, a DBMS is generally chosen for each one. And so the organization will generally have a process in place for buying DBMS, or accepting them for free. Central IT, departments, and — at least in the case of free open source stuff — developers all commonly have the capacity for DBMS acquisition.
In particular, at many enterprises either departments have the ability to buy their own analytic technology, or else IT will willingly buy and administer things for a single department. This dynamic fueled much of the early rise of analytic RDBMS.
Buyer inertia is a greater concern.
- A significant minority of enterprises are highly committed to their enterprise DBMS standards.
- Another significant minority aren’t quite as committed, but set pretty high bars for new DBMS products to cross nonetheless.
- FUD (Fear, Uncertainty and Doubt) about new DBMS is often justifiable, about stability and consistent performance alike.
A particularly complex version of this dynamic has played out in the market for analytic RDBMS/appliances.
- First the newer products (from Netezza onwards) were sold to organizations who knew they wanted great performance or price/performance.
- Then it became more about selling “business value” to organizations who needed more convincing about the benefits of great price/performance.
- Then the behemoth vendors became more competitive, as Teradata introduced lower-price models, Oracle introduced Exadata, Sybase got more aggressive with Sybase IQ, IBM bought Netezza, EMC bought Greenplum, HP bought Vertica and so on. It is now hard for a non-behemoth analytic RDBMS vendor to make headway at large enterprise accounts.
- Meanwhile, Hadoop has emerged as serious competitor for at least some analytic data management, especially but not only at internet companies.
Otherwise I’d say: Read more