Data warehouse appliances

Analysis of data warehouse appliances – i.e., of hardware/software bundles optimized for fast query and analysis of large volumes of (usually) relational data. Related subjects include:

November 10, 2013

RDBMS and their bundle-mates

Relational DBMS used to be fairly straightforward product suites, which boiled down to:

Now, however, most RDBMS are sold as part of something bigger.

Read more

August 12, 2013

Things I keep needing to say

Some subjects just keep coming up. And so I keep saying things like:

Most generalizations about “Big Data” are false. “Big Data” is a horrific catch-all term, with many different meanings.

Most generalizations about Hadoop are false. Reasons include:

Hadoop won’t soon replace relational data warehouses, if indeed it ever does. SQL-on-Hadoop is still very immature. And you can’t replace data warehouses unless you have the power of SQL.

Note: SQL isn’t the only way to provide “the power of SQL”, but alternative approaches are just as immature.

Most generalizations about NoSQL are false. Different NoSQL products are … different. It’s not even accurate to say that all NoSQL systems lack SQL interfaces. (For example, SQL-on-Hadoop often includes SQL-on-HBase.)

Read more

August 6, 2013

Hortonworks, Hadoop, Stinger and Hive

I chatted yesterday with the Hortonworks gang. The main subject was Hortonworks’ approach to SQL-on-Hadoop — commonly called Stinger —  but at my request we cycled through a bunch of other topics as well. Company-specific notes include:

Our deployment and use case discussions were a little confused, because a key part of Hortonworks’ strategy is to support and encourage the idea of combining use cases and workloads on a single cluster. But I did hear:

*By the way — Teradata seems serious about pushing the UDA as a core message.

Ecosystem notes, in Hortonworks’ perception, included:

I also asked specifically about OpenStack. Hortonworks is a member of the OpenStack project, contributes nontrivially to Swift and other subprojects, and sees Rackspace as an important partner. But despite all that, I think strong Hadoop/OpenStack integration is something for the indefinite future.

Hortonworks’ views about Hadoop 2.0 start from the premise that its goal is to support running a multitude of workloads on a single cluster. (See, for example, what I previously posted about Tez and YARN.) Timing notes for Hadoop 2.0 include:

Frankly, I think Cloudera’s earlier and necessarily incremental Hadoop 2 rollout was a better choice than Hortonworks’ later big bang, even though the core-mission aspect of Hadoop 2.0 is what was least ready. HDFS (Hadoop Distributed File System) performance, NameNode failover and so on were well worth having, and it’s more than a year between Cloudera starting supporting them and when Hortonworks is offering Hadoop 2.0.

Hortonworks’ approach to doing SQL-on-Hadoop can be summarized simply as “Make Hive into as good an analytic RDBMS as possible, all in open source”. Key elements include:  Read more

April 15, 2013

Notes on Teradata systems

Teradata is announcing its new high-end systems, the Teradata 6700 series. Notes on that include:

Teradata is also talking about data integration and best-of-breed systems, with buzzwords such as:

Read more

March 24, 2013

Appliances, clusters and clouds

I believe:

I shall explain.

Arguments for hosting applications on some kind of cluster include:

Arguments specific to the public cloud include:

That’s all pretty compelling. However, these are not persuasive reasons to put everything on a SINGLE cluster or cloud. They could as easily lead you to have your VMware cluster and your Exadata rack and your Hadoop cluster and your NoSQL cluster and your object storage OpenStack cluster — among others — all while participating in several different public clouds as well.

Why would you not move work into a cluster at all? First, if ain’t broken, you might not want to fix it. Some of the cluster options make it easy for you to consolidate existing workloads — that’s a central goal of VMware and Exadata — but others only make sense to adopt in connection with new application projects. Second, you might just want device locality. I have a gaming-class PC next to my desk; it drives a couple of monitors; I like that arrangement. Away from home I carry a laptop computer instead. Arguments can be made for small remote-office servers as well.

Read more

February 27, 2013

Hadoop distributions

Elephants! Elephants!
One elephant went out to play
Sat on a spider’s web one day.
They had such enormous fun
Called for another elephant to come.

Elephants! Elephants!
Two elephants went out to play
Sat on a spider’s web one day.
They had such enormous fun
Called for another elephant to come.

Elephants! Elephants!
Three elephants went out to play
Etc.

—  Popular children’s song

It’s Strata week, with much Hadoop news, some of which I’ve been briefed on and some of which I haven’t. Rather than delve into fine competitive details, let’s step back and consider some generalities. First, about Hadoop distributions and distro providers:

Most of the same observations could apply to Hadoop appliance vendors.

Read more

February 6, 2013

Key questions when selecting an analytic RDBMS

I recently complained that the Gartner Magic Quadrant for Data Warehouse DBMS conflates many use cases into one set of rankings. So perhaps now would be a good time to offer some thoughts on how to tell use cases apart. Assuming you know that you really want to manage your analytic database with a relational DBMS, the first questions you ask yourself could be:

Let’s drill down. Read more

February 5, 2013

Comments on Gartner’s 2012 Magic Quadrant for Data Warehouse Database Management Systems — evaluations

To my taste, the most glaring mis-rankings in the 2012/2013 Gartner Magic Quadrant for Data Warehouse Database Management are that it is too positive on Kognitio and too negative on Infobright. Secondarily, it is too negative on HP Vertica, and too positive on ParAccel and Actian/VectorWise. So let’s consider those vendors first.

Gartner seems confused about Kognitio’s products and history alike.

Gartner is correct, however, to note that Kognitio doesn’t sell much stuff overall.

* non-existent

In the cases of HP Vertica, Infobright, ParAccel, and Actian/VectorWise, the 2012 Gartner Magic Quadrant for Data Warehouse Database Management’s facts are fairly accurate, but I dispute Gartner’s evaluation. When it comes to Vertica: Read more

November 29, 2012

Notes on Microsoft SQL Server

I’ve been known to gripe that covering big companies such as Microsoft is hard. Still, Doug Leland of Microsoft’s SQL Server team checked in for phone calls in August and again today, and I think I got enough to be worth writing about, albeit at a survey level only,

Subjects I’ll mention include:

One topic I can’t yet comment about is MOLAP/ROLAP, which is a pity; if anybody can refute my claim that ROLAP trumps MOLAP, it’s either Microsoft or Oracle.

Microsoft’s slides mentioned Yahoo refining a 6 petabyte Hadoop cluster into a 24 terabyte SQL Server “cube”, which was surprising in light of Yahoo’s history as an Oracle reference.

Read more

October 17, 2012

Notes on Hadoop hardware

I talked with Cloudera yesterday about an unannounced technology, and took the opportunity to ask some non-embargoed questions as well. In particular, I requested an update to what I wrote last year about typical Hadoop hardware.

Cloudera thinks the picture now is:

Discussion around that included:

Read more

← Previous PageNext Page →

Feed: DBMS (database management system), DW (data warehousing), BI (business intelligence), and analytics technology Subscribe to the Monash Research feed via RSS or email:

Login

Search our blogs and white papers

Monash Research blogs

User consulting

Building a short list? Refining your strategic plan? We can help.

Vendor advisory

We tell vendors what's happening -- and, more important, what they should do about it.

Monash Research highlights

Learn about white papers, webcasts, and blog highlights, by RSS or email.