January 5, 2013

Data(base) virtualization — a terminological mess

Data/database virtualization seems to be a hot subject right now, and vendors of a broad variety of different technologies are all claiming to be in the space. A terminological mess has ensued, as Monash’s First and Third Laws of Commercial Semantics are borne out in spades.

If something is like “virtualization”, then it should resemble hypervisors such as VMware. To me:

Anything that claims to be “like virtualization” should be viewed in that light. Read more

November 19, 2012

Incremental MapReduce

My clients at Cloudant, Couchbase, and 10gen/MongoDB (Edit: See Alex Popescu’s comment below) all boast the feature incremental MapReduce. (And they’re not the only ones.) So I feel like making a quick post about it. For starters, I’ll quote myself about Cloudant:

The essence of Cloudant’s incremental MapReduce seems to be that data is selected only if it’s been updated since the last run. Obviously, this only works for MapReduce algorithms whose eventual output can be run on different subsets of the target data set, then aggregated in a simple way.

These implementations of incremental MapReduce are hacked together by teams vastly smaller than those working on Hadoop, and surely fall short of Hadoop in many areas such as performance, fault-tolerance, and language support. That’s a given. Still, if the jobs are short and simple, those deficiencies may be tolerable.

A StackOverflow thread about MongoDB’s version of incremental MapReduce highlights some of the implementation challenges.

But all practicality aside, let’s return to the point that incremental MapReduce only works for some kinds of MapReduce-based algorithms, and consider how much of a limitation that really is. Looking at the Map steps sheds a little light: Read more

October 31, 2012

Notes and comments — October 31, 2012

Time for another catch-all post. First and saddest — one of the earliest great commenters on this blog, and a beloved figure in the Boston-area database community, was Dan Weinreb, whom I had known since some Symbolics briefings in the early 1980s. He passed away recently, much much much too young. Looking back for a couple of examples — even if you’ve never heard of him before, I see that Dan ‘s 2009 comment on Tokutek is still interesting today, and so is a post on his own blog disagreeing with some of my choices in terminology.

Otherwise, in no particular order:

1. Chris Bird is learning MongoDB. As is common for Chris, his comments are both amusing and enlightening.

2. When I relayed Cloudera’s comments on Hadoop adoption, I left out a couple of categories. One Cloudera called “mobile”; when I probed, that was about HBase, with an example being messaging apps.

The other was “phone home” — i.e., the ingest of machine-generated data from a lot of different devices. This is something that’s obviously been coming for several years — but I’m increasingly getting the sense that it’s actually arrived.

Read more

October 29, 2012

Introduction to Continuuity

I chatted with Todd Papaioannou about his new company Continuuity. Todd is as handy at combining buzzwords as he is at concatenating vowels, and so Continuuity — with two “U”s —  is making a big data fabric platform as a service with REST APIs that runs over Hadoop and HBase in the private or public clouds. I found the whole thing confusing, in that:

But all confusion aside, there are some interesting aspects to Continuuity. Read more

October 24, 2012

Introduction to Cirro

Stuart Frost, of DATAllegro fame, has started a small family of companies, and they’ve become my clients sort of as a group. The first one that I’m choosing to write about is Cirro, for which the basics are:

Data federation stories are often hard to understand because, until you drill down, they implausibly sound as if they do anything for everybody. That said, it’s reasonable to think of Cirro as a layer between Hadoop and your BI tool that:

In both cases, Cirro is calling on your data management software for help, RDBMS or Hadoop as the case may be.

More precisely, Cirro’s approach is: Read more

October 18, 2012

Notes on Hadoop adoption and trends

With Strata/Hadoop World being next week, there is much Hadoop discussion. One theme of the season is BI over Hadoop. I have at least 5 clients claiming they’re uniquely positioned to support that (most of whom partner with a 6th client, Tableau); the first 2 whose offerings I’ve actually written about are Teradata Aster and Hadapt. More generally, I’m hearing “Using Hadoop is hard; we’re here to make it easier for you.”

If enterprises aren’t yet happily running business intelligence against Hadoop, what are they doing with it instead? I took the opportunity to ask Cloudera, whose answers didn’t contradict anything I’m hearing elsewhere. As Cloudera tells it (approximately — this part of the conversation* was rushed):   Read more

October 7, 2012

IBM’s ETL

Bearing in mind the difficulties in covering big companies and their products, I had a call with IBM about its core ETL technology (Extract/Transform/Load), and have some notes accordingly. It’s pretty reasonable to say that there are and were a Big Three of high-end ETL vendors:

However, IBM fondly thinks there are a Big Two, on the theory that Informatica Powercenter can’t scale as well as IBM and Ab Initio can, and hence gets knocked out of deals when particularly strong scalability and throughput are required. Read more

September 24, 2012

Notes on Hadoop adoption

I successfully resisted telephone consulting while on vacation, but I did do some by email. One was on the oft-recurring subject of Hadoop adoption. I think it’s OK to adapt some of that into a post.

Notes on past and current Hadoop adoption include:

Thoughts on how Hadoop adoption will look going forward include: Read more

September 7, 2012

Integrated internet system design

What are the central challenges in internet system design? We probably all have similar lists, comprising issues such as scale, scale-out, throughput, availability, security, programming ease, UI, or general cost-effectiveness. Screw those up, and you don’t have an internet business.

Much new technology addresses those challenges, with considerable success. But the success is usually one silo at a time — a short-request application here, an analytic database there. When it comes to integration, unsolved problems abound.

The top integration and integration-like challenges for me, from a practical standpoint, are:

Other concerns that get mentioned include:

Let’s skip those latter issues for now, focusing instead on the first four.

Read more

September 2, 2012

Uninterrupted DBMS operation — an almost-achievable goal

I’m hearing more and more stories about uninterrupted DBMS operation. There are no iron-clad assurances of zero downtime; if nothing else, you could crash your whole system yourself via some kind of application bug. Even so, it’s a worthy ideal, and near-zero downtime is a practical goal.

Uninterrupted database operations can have a lot of different aspects. The two most basic are probably:

These work with single-server or scale-out systems alike. However, scale-out and the replication commonly associated with it raise additional issues in continuous database operation:

Finally, if you really care about uninterrupted operation, you might also want to examine:

Let’s discuss some of those points below.

Read more

← Previous PageNext Page →

Feed: DBMS (database management system), DW (data warehousing), BI (business intelligence), and analytics technology Subscribe to the Monash Research feed via RSS or email:

Login

Search our blogs and white papers

Monash Research blogs

User consulting

Building a short list? Refining your strategic plan? We can help.

Vendor advisory

We tell vendors what's happening -- and, more important, what they should do about it.

Monash Research highlights

Learn about white papers, webcasts, and blog highlights, by RSS or email.