Trends in predictive modeling
I talked with Teradata about a bunch of stuff yesterday, including this week’s announcements in in-database predictive modeling. The specific news was about partnerships with Fuzzy Logix and Revolution Analytics. But what I found more interesting was the surrounding discussion. In a nutshell:
- Teradata is finally seeing substantial interest in in-database modeling, rather than just in-database scoring (which has been important for years) and in-database data preparation (which is a lot like ELT — Extract/Load/transform).
- Teradata is seeing substantial interest in R.
- It seems as if similar groups of customers are interested in both parts of that, such as:
- Usual-suspect consumer marketing sectors (telecom, credit card, retail).*
- Semiconductor manufacturing.**
- Parallelized SAS modeling on Teradata seems to be limited by the small number of algorithms that are parallelized. (SAS scoring, I presume, is a different matter.)
This is the strongest statement of perceived demand for in-database modeling I’ve heard. (Compare Point #3 of my July predictive modeling post.) And fits with what I’ve been hearing about R.
Categories: EAI, EII, ETL, ELT, ETLT, Parallelization, Predictive modeling and advanced analytics, Revolution Analytics, SAS Institute, Telecommunications, Teradata | 1 Comment |
Hortonworks business notes
Hortonworks did a business-oriented round of outreach, talking with at least Derrick Harris and me. Notes from my call — for which Rob Bearden didn’t bother showing up — include, in no particular order:
- Hortonworks denies advanced acquisition discussions with either Microsoft and Intel. Of course, that doesn’t exactly contradict the widespread story of Intel having made an acquisition offer. Edit: I have subsequently heard, very credibly, that the denial was untrue.
- As vendors usually do, Hortonworks denies the extreme forms of Cloudera’s suggestion that Hortonworks competitive wins relate to price slashing. But Hortonworks does believe that its license fees often wind up being lower than Cloudera’s, due especially to Hortonworks offering few extra-charge items than Cloudera.
- Hortonworks used a figure of ~75 subscription customers. Edit: That figure turns out in retrospect to have been inflated. This does not include OEM sales through, for example, Teradata, Microsoft Azure, or Rackspace. However, that does include …
- … a small number of installations hosted in the cloud — e.g. ~2 on Amazon Web Services — or otherwise remotely. Also, testing in the cloud seems to be fairly frequent, and the cloud can also be a source of data ingested into Hadoop.
- Since Hortonworks a couple of times made it seem that Rackspace was an important partner, behind only Teradata and Microsoft, I finally asked why. Answers boiled down to a Rackspace Hadoop-as-a-service offering, plus joint work to improve Hadoop-on-OpenStack.
- Other Hortonworks reseller partners seem more important in terms of helping customers consume HDP (Hortonworks Data Platform), rather than for actually doing Hortonworks’ selling for it. (This is unsurprising — channel sales rarely are a path to success for a product that is also appropriately sold by a direct force.)
- Hortonworks listed its major industry sectors as:
- Web and retailing, which it identifies as one thing.
- Media.
- Telecommunications.
- Health care (various subsectors).
- Financial services, which it called “competitive” in the kind of tone that usually signifies “we lose a lot more than we win, and would love to change that”.
In Hortonworks’ view, Hadoop adopters typically start with a specific use case around a new type of data, such as clickstream, sensor, server log, geolocation, or social. Read more
Syncsort extends Hadoop MapReduce
My client Syncsort:
- Is an ETL (Extract/Transform/Load) vendor, whose flagship product DMExpress was evidently renamed to DMX.
- Has a strong history in and fondness for sort.
- Has announced a new ETL product, DMX-h ETL Edition, which uses Hadoop MapReduce to parallelize DMX by controlling a copy of DMX that resides on every data node of the Hadoop cluster.*
- Has also announced the closely-related DMX-h Sort Edition, offering acceleration for the sorts inherent in Map and Reduce steps.
- Contributed a patch to Apache Hadoop to open up Hadoop MapReduce to make all this possible.
*Perhaps we should question Syncsort’s previous claims of having strong multi-node parallelism already. 🙂
The essence of the Syncsort DMX-h ETL Edition story is:
- DMX-h inherits the various ETL-suite trappings of DMX.
- Syncsort claims DMX-h has major performance advantages vs., for example, Hive- or Pig-based alternatives.
- With a copy of DMX on every node, DMX-h can do parallel load/export.
More details can be found in a slide deck Syncsort graciously allowed me to post. Read more
Categories: Cloudera, Clustering, EAI, EII, ETL, ELT, ETLT, Hadoop, MapReduce, Syncsort | 8 Comments |
Notes on Teradata systems
Teradata is announcing its new high-end systems, the Teradata 6700 series. Notes on that include:
- Teradata tends to get 35-55% (roughly speaking) annual performance improvements, as measured by its internal blended measure Tperf. A big part of this is exploiting new-generation Intel processors.
- This year the figure is around 40%.
- The 6700 is based on Intel’s Sandy Bridge.
- Teradata previously told me that Ivy Bridge — the next one after Sandy Bridge — could offer a performance “discontinuity”. So, while this is just a guess, I expect that next year’s Teradata performance improvement will beat this year’s.
- Teradata has now largely switched over to InfiniBand.
Teradata is also talking about data integration and best-of-breed systems, with buzzwords such as:
- Teradata Unified Data Architecture.
- Fabric-based computing, even though this isn’t really about storage.
- Teradata SQL-H.
Categories: Data integration and middleware, Data warehouse appliances, Data warehousing, Pricing, SAS Institute, Teradata | 3 Comments |
Teradata SQL-H
As vendors so often do, Teradata has caused itself some naming confusion. SQL-H was introduced as a facility of Teradata Aster, to complement SQL-MR.* But while SQL-MR is in essence a set of SQL extensions, SQL-H is not. Rather, SQL-H is a transparency interface that makes Hadoop data responsive to the same code that would work on Teradata Aster …
*Speaking of confusion — Teradata Aster seems to use the spellings SQL/MR and SQL-MR interchangeably.
… except that now there’s also a SQL-H for regular Teradata systems as well. While it has the same general features and benefits as SQL-H for Teradata Aster, the details are different, since the underlying systems are.
I hope that’s clear. 🙂
Categories: Data integration and middleware, Data warehousing, Emulation, transparency, portability, Hadoop, SQL/Hadoop integration, Teradata | 2 Comments |
Some notes on new-era data management, March 31, 2013
Hmm. I probably should have broken this out as three posts rather than one after all. Sorry about that.
Performance confusion
Discussions of DBMS performance are always odd, for starters because:
- Workloads and use cases vary greatly.
- In particular, benchmarks such as the YCSB or TPC-H aren’t very helpful.
But in NoSQL/NewSQL short-request processing performance claims seem particularly confused. Reasons include but are not limited to:
- It’s common for databases or at least working sets to be entirely in RAM — but it’s not always required.
- Consistency and durability models vary. What’s more, in some systems — e.g. MongoDB — there’s considerable flexibility as to which model you use.
- In particular, there’s an increasingly common choice in which data is written synchronously to RAM on 2 or more servers, then asynchronously to disk on each of them. Performance in these cases can be quite different from when all writes need to be committed to disk. Of course, you need sufficient disk I/O to keep up, so SSDs (Solid-State Drives) can come in handy.
- Many workloads are inherently single node (replication aside). Others are not.
MongoDB and 10gen
I caught up with Ron Avnur at 10gen. Technical highlights included: Read more
Platfora at the time of first GA
Well-resourced Silicon Valley start-ups typically announce their existence multiple times. Company formation, angel funding, Series A funding, Series B funding, company launch, product beta, and product general availability may not be 7 different “news events”, but they’re apt to be at least 3-4. Platfora, no exception to this rule, is hitting general availability today, and in connection with that I learned a bit more about what they are up to.
In simplest terms, Platfora offers exploratory business intelligence against Hadoop-based data. As per last weekend’s post about exploratory BI, a key requirement is speed; and so far as I can tell, any technological innovation Platfora offers relates to the need for speed. Specifically, I drilled into Platfora’s performance architecture on the query processing side (and associated data movement); Platfora also brags of rendering 100s of 1000s of “marks” quickly in HTML5 visualizations, but I haven’t a clue as to whether that’s much of an accomplishment in itself.
Platfora’s marketing suggests it obviates the need for a data warehouse at all; for most enterprises, of course, that is a great exaggeration. But another dubious aspect of Platfora marketing actually serves to understate the product’s merits — Platfora claims to have an “in-memory” product, when what’s really the case is that Platfora’s memory-centric technology uses both RAM and disk to manage larger data marts than could reasonably be fit into RAM alone. Expanding on what I wrote about Platfora when it de-stealthed: Read more
It’s hard to make data easy to analyze
It’s hard to make data easy to analyze. While everybody seems to realize this — a few marketeers perhaps aside — some remarks might be useful even so.
Many different technologies purport to make data easy, or easier, to an analyze; so many, in fact, that cataloguing them all is forbiddingly hard. Major claims, and some technologies that make them, include:
- “We get data into a form in which it can be analyzed.” This is the story behind, among others:
- Most of the data integration and ETL (Extract/Transform/Load) industries, software vendors and consulting firms alike.
- Many things that purport to be “analytic applications” or data warehouse “quick starts”.
- “Data reduction” use cases in event processing.*
- Text analytics tools.
- Splunk.
- “Forget all that transformation foofarah — just load (or write) data into our thing and start analyzing it immediately.” This at various times has been much of the story behind:
- Relational DBMS, according to their inventor E. F. Codd.
- MOLAP (Multidimensional OnLine Analytic Processing), also according to RDBMS inventor E. F. Codd.
- Any kind of analytic DBMS, or general purpose DBMS used for data warehousing.
- Newer kinds of analytic DBMS that are faster than older kinds.
- The “data mart spin-out” feature of certain analytic DBMS.
- In-memory analytic data stores.
- Hadoop.
- NoSQL DBMS that have a few analytic features.
- TokuDB, similarly.
- Electronic spreadsheets, from VisiCalc to Datameer.
- Splunk.
- “Our tools help you with specific kinds of analyses or analytic displays.” This is the story underlying, among others:
- The business intelligence industry.
- The predictive analytics industry.
- Algorithmic trading use cases in complex event processing.*
- Some analytic applications.
- Splunk.
*Complex event/stream processing terminology is always problematic.
My thoughts on all this start: Read more
Key questions when selecting an analytic RDBMS
I recently complained that the Gartner Magic Quadrant for Data Warehouse DBMS conflates many use cases into one set of rankings. So perhaps now would be a good time to offer some thoughts on how to tell use cases apart. Assuming you know that you really want to manage your analytic database with a relational DBMS, the first questions you ask yourself could be:
- How big is your database? How big is your budget?
- How do you feel about appliances?
- How do you feel about the cloud?
- What are the size and shape of your workload?
- How fresh does the data need to be?
Let’s drill down. Read more
Comments on Gartner’s 2012 Magic Quadrant for Data Warehouse Database Management Systems — concepts
The 2012 Gartner Magic Quadrant for Data Warehouse Database Management Systems is out. I’ll split my comments into two posts — this one on concepts, and a companion on specific vendor evaluations.
Links:
- Maintaining working links to Gartner Magic Quadrants is an adventure. But as of early February, 2013, this link seems live.
- I also commented on the 2011, 2010, 2009, 2008, 2007, and 2006 Gartner Magic Quadrants for Data Warehouse DBMS.
Let’s start by again noting that I regard Gartner Magic Quadrants as a bad use of good research. On the facts:
- Gartner collects a lot of input from traditional enterprises. I envy that resource.
- Gartner also does a good job of rounding up vendor claims about user base sizes and the like. If nothing else, you should skim the MQ report for that reason.
- Gartner observations about product feature sets are usually correct, although not so consistently that they should be relied on.
When it comes to evaluations, however, the Gartner Data Warehouse DBMS Magic Quadrant doesn’t do as well. My concerns (which overlap) start:
- The Gartner MQ conflates many different use cases into one ranking (inevitable in this kind of work, but still regrettable).
- A number of the MQ vendor evaluations seem hard to defend. So do some of Gartner’s specific comments.
- Some of Gartner’s criteria seemingly amount to “parrots back our opinions to us”.
- As do I, Gartner thinks a vendor’s business and financial strength are important. But Gartner overdoes the matter, drilling down into picky issues it can’t hope to judge, such as assessing a vendor’s “ability to generate and develop leads.” *
- The 2012 Gartner Data Warehouse DBMS Magic Quadrant is closer to being a 1-dimensional ranking than 2-dimensional, in that entries are clustered along the line x=y. This suggests strong correlation among the results on various specific evaluation criteria.