EAI, EII, ETL, ELT, ETLT
Analysis of data integration products and technologies, especially ones related to data warehousing, such as ELT (Extract/Transform/Load). Related subjects include:
Greenplum is being open sourced
While I don’t find the Open Data Platform thing very significant, an associated piece of news seems cooler — Pivotal is open sourcing a bunch of software, with Greenplum as the crown jewel. Notes on that start:
- Greenplum has been an on-again/off-again low-cost player since before its acquisition by EMC, but open source is basically a commitment to having low license cost be permanently on.
- In most regards, “free like beer” is what’s important here, not “free like speech”. I doubt non-Pivotal employees are going to do much hacking on the long-closed Greenplum code base.
- That said, Greenplum forked PostgreSQL a long time ago, and the general PostgreSQL community might gain ideas from some of the work Greenplum has done.
- The only other bit of newly open-sourced stuff I find interesting is HAWQ. Redis was already open source, and I’ve never been persuaded to care about GemFire.
Greenplum, let us recall, is a pretty decent MPP (Massively Parallel Processing) analytic RDBMS. Various aspects of it were oversold at various times, and I’ve never heard that they actually licked concurrency. But Greenplum has long had good SQL coverage and petabyte-scale deployments and a columnar option and some in-database analytics and so on; i.e., it’s legit. When somebody asks me about open source analytic RDBMS to consider, I expect Greenplum to consistently be on the short list.
Further, the low-cost alternatives for analytic RDBMS are adding up. Read more
Categories: Amazon and its cloud, Citus Data, Data warehouse appliances, EAI, EII, ETL, ELT, ETLT, EMC, Greenplum, Hadoop, Infobright, MonetDB, Open source, Pricing | 6 Comments |
Where the innovation is
I hoped to write a reasonable overview of current- to medium-term future IT innovation. Yeah, right. 🙂 But if we abandon any hope that this post could be comprehensive, I can at least say:
1. Back in 2011, I ranted against the term Big Data, but expressed more fondness for the V words — Volume, Velocity, Variety and Variability. That said, when it comes to data management and movement, solutions to the V problems have generally been sketched out.
- Volume has been solved. There are Hadoop installations with 100s of petabytes of data, analytic RDBMS with 10s of petabytes, general-purpose Exadata sites with petabytes, and 10s/100s of petabytes of analytic Accumulo at the NSA. Further examples abound.
- Velocity is being solved. My recent post on Hadoop-based streaming suggests how. In other use cases, velocity is addressed via memory-centric RDBMS.
- Variety and Variability have been solved. MongoDB, Cassandra and perhaps others are strong NoSQL choices. Schema-on-need is in earlier days, but may help too.
2. Even so, there’s much room for innovation around data movement and management. I’d start with:
- Product maturity is a huge issue for all the above, and will remain one for years.
- Hadoop and Spark show that application execution engines:
- Have a lot of innovation ahead of them.
- Are tightly entwined with data management, and with data movement as well.
- Hadoop is due for another refactoring, focused on both in-memory and persistent storage.
- There are many issues in storage that can affect data technologies as well, including but not limited to:
- Solid-state (flash or post-flash) vs. spinning disk.
- Networked vs. direct-attached.
- Virtualized vs. identifiable-physical.
- Object/file/block.
- Graph analytics and data management are still confused.
3. As I suggested last year, data transformation is an important area for innovation. Read more
Streaming for Hadoop
The genesis of this post is that:
- Hortonworks is trying to revitalize the Apache Storm project, after Storm lost momentum; indeed, Hortonworks is referring to Storm as a component of Hadoop.
- Cloudera is talking up what I would call its human real-time strategy, which includes but is not limited to Flume, Kafka, and Spark Streaming. Cloudera also sees a few use cases for Storm.
- This all fits with my view that the Current Hot Subject is human real-time data freshness — for analytics, of course, since we’ve always had low latencies in short-request processing.
- This also all fits with the importance I place on log analysis.
- Cloudera reached out to talk to me about all this.
Of course, we should hardly assume that what the Hadoop distro vendors favor will be the be-all and end-all of streaming. But they are likely to at least be influential players in the area.
In the parts of the problem that Cloudera emphasizes, the main tasks that need to be addressed are: Read more
Some stuff on my mind, September 28, 2014
1. I wish I had some good, practical ideas about how to make a political difference around privacy and surveillance. Nothing else we discuss here is remotely as important. I presumably can contribute an opinion piece to, more or less, the technology publication(s) of my choice; that can have a small bit of impact. But I’d love to do better than that. Ideas, anybody?
2. A few thoughts on cloud, colocation, etc.:
- The economies of scale of colocation-or-cloud over operating your own data center are compelling. Most of the reasons you outsource hardware manufacture to Asia also apply to outsourcing data center operation within the United States. (The one exception I can think of is supply chain.)
- The arguments for cloud specifically over colocation are less persuasive. Colo providers can even match cloud deployments in rapid provisioning and elastic pricing, if they so choose.
- Surely not coincidentally, I am told that Rackspace is deemphasizing cloud, reemphasizing colocation, and making a big deal out of Open Compute. In connection with that, Rackspace has pulled back from its leadership role in OpenStack.
- I’m hearing much more mention of Amazon Redshift than I used to. It seems to have a lot of traction as a simple and low-cost option.
- I’m hearing less about Elastic MapReduce than I used to, although I imagine usage is still large and growing.
- In general, I get the impression that progress is being made in overcoming the inherent difficulties in cloud (and even colo) parallel analytic processing. But it all still seems pretty vague, except for the specific claims being made for traction of Redshift, EMR, and so on.
- Teradata recently told me that in colocation pricing, it is common for floor space to be everything, with power not separately metered. But I don’t think that trend is a big deal, as it is not necessarily permanent.
- Cloud hype is of course still with us.
- Other than the above, I stand by my previous thoughts on appliances, clusters and clouds.
3. As for the analytic DBMS industry: Read more
“Freeing business analysts from IT”
Many of the companies I talk with boast of freeing business analysts from reliance on IT. This, to put it mildly, is not a unique value proposition. As I wrote in 2012, when I went on a history of analytics posting kick,
- Most interesting analytic software has been adopted first and foremost at the departmental level.
- People seem to be forgetting that fact.
In particular, I would argue that the following analytic technologies started and prospered largely through departmental adoption:
- Fourth-generation languages (the analytically-focused ones, which in fact started out being consumed on a remote/time-sharing basis)
- Electronic spreadsheets
- 1990s-era business intelligence
- Dashboards
- Fancy-visualization business intelligence
- Planning/budgeting
- Predictive analytics
- Text analytics
- Rules engines
What brings me back to the topic is conversations I had this week with Paxata and Metanautix. The Paxata story starts:
- Paxata is offering easy — and hopefully in the future comprehensive — “data preparation” tools …
- … that are meant to be used by business analysts rather than ETL (Extract/Transform/Load) specialists or other IT professionals …
- … where what Paxata means by “data preparation” is not specifically what a statistician would mean by the term, but rather generally refers to getting data ready for business intelligence or other analytics.
Metanautix seems to aspire to a more complete full-analytic-stack-without-IT kind of story, but clearly sees the data preparation part as a big part of its value.
If there’s anything new about such stories, it has to be on the transformation side; BI tools have been helping with data extraction since — well, since the dawn of BI. Read more
Categories: Business intelligence, Datameer, EAI, EII, ETL, ELT, ETLT, Predictive modeling and advanced analytics, Progress, Apama, and DataDirect | 12 Comments |
Data integration as a business opportunity
A significant fraction of IT professional services industry revenue comes from data integration. But as a software business, data integration has been more problematic. Informatica, the largest independent data integration software vendor, does $1 billion in revenue. INFA’s enterprise value (market capitalization after adjusting for cash and debt) is $3 billion, which puts it way short of other category leaders such as VMware, and even sits behind Tableau.* When I talk with data integration startups, I ask questions such as “What fraction of Informatica’s revenue are you shooting for?” and, as a follow-up, “Why would that be grounds for excitement?”
*If you believe that Splunk is a data integration company, that changes these observations only a little.
On the other hand, several successful software categories have, at particular points in their history, been focused on data integration. One of the major benefits of 1990s business intelligence was “Combines data from multiple sources on the same screen” and, in some cases, even “Joins data from multiple sources in a single view”. The last few years before application servers were commoditized, data integration was one of their chief benefits. Data warehousing and Hadoop both of course have a “collect all your data in one place” part to their stories — which I call data mustering — and Hadoop is a data transformation tool as well.
DBMS2 revisited
The name of this blog comes from an August, 2005 column. 8 1/2 years later, that analysis holds up pretty well. Indeed, I’d keep the first two precepts exactly as I proposed back then:
- Task-appropriate data managers. Much of this blog is about task-appropriate data stores, so I won’t say more about them in this post.
- Drastic limitations on relational schema complexity. I think I’ve been vindicated on that one by, for example:
- NoSQL and dynamic schemas.
- Schema-on-read, and its smarter younger brother schema-on-need.
- Limitations on the performance and/or allowed functionality of joins in scale-out short-request RDBMS, and the relative lack of complaints about same.
- Funky database design from major Software as a Service (SaaS) vendors such as Workday and Salesforce.com.
- A whole lot of logs.
I’d also keep the general sense of the third precept, namely appropriately-capable data integration, but for that one the specifics do need some serious rework.
For starters, let me say: Read more
Categories: About this blog, Business intelligence, Database diversity, EAI, EII, ETL, ELT, ETLT, Investment research and trading, NoSQL, Schema on need | 2 Comments |
Distinctions in SQL/Hadoop integration
Ever more products try to integrate SQL with Hadoop, and discussions of them seem confused, in line with Monash’s First Law of Commercial Semantics. So let’s draw some distinctions, starting with (and these overlap):
- Are the SQL engine and Hadoop:
- Necessarily on the same cluster?
- Necessarily or at least most naturally on different clusters?
- How, if at all, is Hadoop invoked by the SQL engine? Specifically, what is the role of:
- HDFS (Hadoop Distributed File System)?
- Hadoop MapReduce?
- HCatalog?
- How, if at all, is the SQL engine invoked by Hadoop?
In particular:
- If something is called a “connector”, then Hadoop and the SQL engine are most likely on separate clusters. Good features include (but these can partially contradict each other):
- A way of making data transfer maximally parallel.
- Query planning that is smart about when to process on the SQL engine and when to use Hadoop’s native SQL (Hive or otherwise).
- If something is called “SQL-on-Hadoop”, then Hadoop and the SQL engine are or should be on the same cluster, using the same nodes to store and process data. But while that’s a necessary condition, I’d prefer that it not be sufficient.
Let’s go to some examples. Read more
Some stuff I’m thinking about (early 2014)
From time to time I like to do “what I’m working on” posts. From my recent blogging, you probably already know that includes:
- Hadoop (always, and please see below).
- Analytic RDBMS (ditto).
- NoSQL and NewSQL.
- Specifically, SQL-on-Hadoop
- Schema-on-need.
- Spark and other memory-centric technology, including streaming.
- Public policy, mainly but not only in the area of surveillance/privacy.
- General strategic advice for all sizes of tech company.
Other stuff on my mind includes but is not limited to:
1. Certain categories of buying organizations are inherently leading-edge.
- Internet companies have adopted Hadoop, NoSQL, NewSQL and all that en masse. Often, they won’t even look at things that are conventional or expensive.
- US telecom companies have been buying 1 each of every DBMS on the market since pre-relational days.
- Financial services firms — specifically algorithmic traders and broker-dealers — have been in their own technical world for decades …
- … as have national-security agencies …
- … as have pharmaceutical research departments.
Fine. But what really intrigues me is when more ordinary enterprises also put leading-edge technologies into production. I pester everybody for examples of that.
Spark and Databricks
I’ve heard a lot of buzz recently around Spark. So I caught up with Ion Stoica and Mike Franklin for a call. Let me start by acknowledging some sources of confusion.
- Spark is very new. All Spark adoption is recent.
- Databricks was founded to commercialize Spark. It is very much in stealth mode …
- … except insofar as Databricks folks are going out and trying to drum up Spark adoption. 🙂
- Ion Stoica is running Databricks, but you couldn’t tell that from his UC Berkeley bio page. Edit: After I posted this, Ion’s bio was quickly updated. 🙂
- Spark creator and Databricks CTO Matei Zaharia is an MIT professor, but actually went on leave there before he ever showed up.
- Cloudera is perhaps Spark’s most visible supporter. But Cloudera’s views of Spark’s role in the world is different from the Spark team’s.
The “What is Spark?” question may soon be just as difficult as the ever-popular “What is Hadoop?” That said — and referring back to my original technical post about Spark and also to a discussion of prominent Spark user ClearStory — my try at “What is Spark?” goes something like this:
- Spark is a distributed execution engine for analytic processes …
- … which works well with Hadoop.
- Spark is distinguished by a flexible in-memory data model …
- … and farms out persistence to HDFS (Hadoop Distributed File System) or other existing data stores.
- Intended analytic use cases for Spark include:
- SQL data manipulation.
- ETL-like data manipulation.
- Streaming-like data manipulation.
- Machine learning.
- Graph analytics.