Application areas

Posts focusing on the use of database and analytic technologies in specific application domains. Related subjects include:

January 28, 2013

Attack of the Frankenschemas

In typical debates, the extremists on both sides are wrong. “SQL vs. NoSQL” is an example of that rule. For many traditional categories of database or application, it is reasonable to say:

Reasons to abandon SQL in any given area usually start:

Some would further say that NoSQL is cheaper, scales better, is cooler or whatever, but given the range of NewSQL alternatives, those claims are often overstated.

Sectors where these reasons kick in include but are not limited to: Read more

November 27, 2012

B2C internet software

I recently opined that, especially for cutting-edge internet businesses, analytic applications were not a realistic option; rather, analytic application subsystems are the most you can currently expect. Erin Griffith further observed that the problem isn’t just confined to analytics:

 “We didn’t need 90 percent of the stuff they were offering, and when we told them what we did need — integration with social, curation tools, individual boutiques and analytics — they had nothing”

… a suitable solution to merge his editorial staff’s output with his separate site for selling tickets to events and goods … was not available, so had to build his own hybrid publishing and commerce platform. Likewise, Birchbox had to build a custom backend so that it could include videos and editorial content alongside its e-commerce site.

…  it’s DIY or die.

With that as background, let’s consider why building business-to-consumer internet software is so complicated.

I’d suggest that a consumer website starts with four major conceptual parts: Read more

November 13, 2012

The future of dashboards, if any

Business intelligence dashboards are frequently bashed. I slammed them back in 2006 and 2007. Mark Smith dropped the hammer last August. EIS, the most dashboard-like pre-1990s analytic technology, was also the most reviled. There are reasons for this disdain, but even so dashboards shouldn’t be dismissed entirely.

In essence, I’d say:

In particular: Read more

November 5, 2012

Do you need an analytic RDBMS?

I can think of seven major reasons not to use an analytic RDBMS. One is good; but the other six seem pretty questionable, niche circumstances excepted, especially at this time.

The good reason to not have an analytic RDBMS is that most organizations can run perfectly well on some combination of:

Those enterprises, however, are generally not who I write for or about.

The six bad reasons to not have an analytic RDBMS all take the form “Can’t some other technology do the job better?”, namely:

Read more

November 5, 2012

Real-time confusion

I recently proposed a 2×2 matrix of BI use cases:

Let me now introduce another 2×2 matrix of analytic scenarios:

My point is that there are at least three different cool things people might think about when they want their analytics to be very fast:

There’s also one slightly boring one that however drives a lot of important applications: Read more

October 31, 2012

Notes and comments — October 31, 2012

Time for another catch-all post. First and saddest — one of the earliest great commenters on this blog, and a beloved figure in the Boston-area database community, was Dan Weinreb, whom I had known since some Symbolics briefings in the early 1980s. He passed away recently, much much much too young. Looking back for a couple of examples — even if you’ve never heard of him before, I see that Dan ‘s 2009 comment on Tokutek is still interesting today, and so is a post on his own blog disagreeing with some of my choices in terminology.

Otherwise, in no particular order:

1. Chris Bird is learning MongoDB. As is common for Chris, his comments are both amusing and enlightening.

2. When I relayed Cloudera’s comments on Hadoop adoption, I left out a couple of categories. One Cloudera called “mobile”; when I probed, that was about HBase, with an example being messaging apps.

The other was “phone home” — i.e., the ingest of machine-generated data from a lot of different devices. This is something that’s obviously been coming for several years — but I’m increasingly getting the sense that it’s actually arrived.

Read more

October 18, 2012

Notes on Hadoop adoption and trends

With Strata/Hadoop World being next week, there is much Hadoop discussion. One theme of the season is BI over Hadoop. I have at least 5 clients claiming they’re uniquely positioned to support that (most of whom partner with a 6th client, Tableau); the first 2 whose offerings I’ve actually written about are Teradata Aster and Hadapt. More generally, I’m hearing “Using Hadoop is hard; we’re here to make it easier for you.”

If enterprises aren’t yet happily running business intelligence against Hadoop, what are they doing with it instead? I took the opportunity to ask Cloudera, whose answers didn’t contradict anything I’m hearing elsewhere. As Cloudera tells it (approximately — this part of the conversation* was rushed):   Read more

September 24, 2012

Notes on Hadoop adoption

I successfully resisted telephone consulting while on vacation, but I did do some by email. One was on the oft-recurring subject of Hadoop adoption. I think it’s OK to adapt some of that into a post.

Notes on past and current Hadoop adoption include:

Thoughts on how Hadoop adoption will look going forward include: Read more

August 24, 2012

Hadoop notes: Informatica, Splunk, and IBM

Informatica, Splunk, and IBM are all public companies, and correspondingly reticent to talk about product futures. Hence, anything I might suggest about product futures from any of them won’t be terribly detailed, and even the vague generalities are “the Good Lord willin’ an’ the creek don’ rise”.

Never let a rising creek overflow your safe harbor.

Anyhow:

1. Hadoop can be an awesome ETL (Extract/Transform/Load) execution engine; it can handle huge jobs and perform a great variety of transformations. (Indeed, MapReduce was invented to run giant ETL jobs.) Thus, if one offers a development-plus-execution stack for ETL processes, it might seem appealing to make Hadoop an ETL execution option. And so:

Informatica told me about other interesting Hadoop-related plans as well, but I’m not sure my frieNDA allows me to mention them at all.

IBM, however, is standing aside. Specifically, IBM told me that it doesn’t see the point of doing the same thing, as its ETL engine — presumably derived from the old Ascential product line — is already parallel and performant enough.

2. Last year, I suggested that Splunk and Hadoop are competitors in managing machine-generated data. That’s still true, but Splunk is also preparing a Hadoop co-opetition strategy. To a first approximation, it’s just Hadoop import/export. However, suppose you view Splunk as offering a three-layer stack: Read more

August 6, 2012

Notes, links and comments August 6, 2012

I haven’t done a notes/link/comments post for a while. Time for a little catch-up.

1. MySQL now has a memcached integration story. I haven’t checked the details. The MySQL team is pretty hard to talk with, due to the heavy-handedness of Oracle’s analyst relations.

2. The Large Hadron Collider offers some serious numbers, including:

3. One application area we don’t talk about much for analytic technologies is education. However: Read more

← Previous PageNext Page →

Feed: DBMS (database management system), DW (data warehousing), BI (business intelligence), and analytics technology Subscribe to the Monash Research feed via RSS or email:

Login

Search our blogs and white papers

Monash Research blogs

User consulting

Building a short list? Refining your strategic plan? We can help.

Vendor advisory

We tell vendors what's happening -- and, more important, what they should do about it.

Monash Research highlights

Learn about white papers, webcasts, and blog highlights, by RSS or email.