Application areas
Posts focusing on the use of database and analytic technologies in specific application domains. Related subjects include:
- Any subcategory
- (in Text Technologies) Specific application areas for text analytics
Notes on analytic technology, May 13, 2015
1. There are multiple ways in which analytics is inherently modular. For example:
- Business intelligence tools can reasonably be viewed as application development tools. But the “applications” may be developed one report at a time.
- The point of a predictive modeling exercise may be to develop a single scoring function that is then integrated into a pre-existing operational application.
- Conversely, a recommendation-driven website may be developed a few pages — and hence also a few recommendations — at a time.
Also, analytics is inherently iterative.
- Everything I just called “modular” can reasonably be called “iterative” as well.
- So can any work process of the nature “OK, we got an insight. Let’s pursue it and get more accuracy.”
If I’m right that analytics is or at least should be modular and iterative, it’s easy to see why people hate multi-year data warehouse creation projects. Perhaps it’s also easy to see why I like the idea of schema-on-need.
2. In 2011, I wrote, in the context of agile predictive analytics, that
… the “business analyst” role should be expanded beyond BI and planning to include lightweight predictive analytics as well.
I gather that a similar point is at the heart of Gartner’s new term citizen data scientist. I am told that the term resonates with at least some enterprises. Read more
Notes, links and comments, May 2, 2015
I’m going to be out-of-sorts this week, due to a colonoscopy. (Between the prep, the procedure, and the recovery, that’s a multi-day disablement.) In the interim, here’s a collection of links, quick comments and the like.
1. Are you an engineer considering a start-up? This post is for you. It’s based on my long experience in and around such scenarios, and includes a section on “Deadly yet common mistakes”.
2. There seems to be a lot of confusion regarding the business model at my clients Databricks. Indeed, my own understanding of Databricks’ on-premises business has changed recently. There are no changes in my beliefs that:
- Databricks does not directly license or support on-premises Spark users. Rather …
- … it helps partner companies to do so, where:
- Examples of partner companies include usual-suspect Hadoop distribution vendors, and DataStax.
- “Help” commonly includes higher-level support.
However, I now get the impression that revenue from such relationships is a bigger deal to Databricks than I previously thought.
Databricks, by the way, has grown to >50 people.
3. DJ Patil and Ruslan Belkin apparently had a great session on lessons learned, covering a lot of ground. Many of the points are worth reading, but one in particular echoed something I’m hearing lots of places — “Data is super messy, and data cleanup will always be literally 80% of the work.” Actually, I’d replace the “always” by something like “very often”, and even that mainly for newish warehouses, data marts or datasets. But directionally the comment makes a whole lot of sense.
Categories: Data integration and middleware, Databricks, Spark and BDAS, DataStax, Hadoop, Health care, Investment research and trading, Text | Leave a Comment |
Cask and CDAP
For starters:
- Continuuity toured in 2012 and touted its “app server for Hadoop” technology.
- Continuuity recently changed its name to Cask and went open source.
- Cask’s product is now called CDAP (Cask Data Application Platform). It’s still basically an app server for Hadoop and other “big data” — ouch do I hate that phrase — data stores.
- Cask and Cloudera partnered.
- I got a more technical Cask briefing this week.
Also:
- App servers are a notoriously amorphous technology. The focus of how they’re used can change greatly every couple of years.
- Partly for that reason, I was unimpressed by Continuuity’s original hype-filled positioning.
So far as I can tell:
- Cask’s current focus is to orchestrate job flows, with lots of data mappings.
- This is supposed to provide lots of developer benefits, for fairly obvious reasons. Those are pitched in terms of an integration story, more in a “free you from the mess of a many-part stack” sense than strictly in terms of data integration.
- CDAP already has a GUI to monitor what’s going on. A GUI to specify workflows is coming very soon.
- CDAP doesn’t consume a lot of cycles itself, and hence isn’t a real risk for unpleasant overhead, if “overhead” is narrowly defined. Rather, performance drags could come from …
- … sub-optimal choices in data mapping, database design or workflow composition.
Data models
7-10 years ago, I repeatedly argued the viewpoints:
- Relational DBMS were the right choice in most cases.
- Multiple kinds of relational DBMS were needed, optimized for different kinds of use case.
- There were a variety of specialized use cases in which non-relational data models were best.
Since then, however:
- Hadoop has flourished.
- NoSQL has flourished.
- Graph DBMS have matured somewhat.
- Much of the action has shifted to machine-generated data, of which there are many kinds.
So it’s probably best to revisit all that in a somewhat organized way.
Information technology for personal safety
There are numerous ways that technology, now or in the future, can significantly improve personal safety. Three of the biggest areas of application are or will be:
- Crime prevention.
- Vehicle accident prevention.
- Medical emergency prevention and response.
Implications will be dramatic for numerous industries and government activities, including but not limited to law enforcement, automotive manufacturing, infrastructure/construction, health care and insurance. Further, these technologies create a near-certainty that individuals’ movements and status will be electronically monitored in fine detail. Hence their development and eventual deployment constitutes a ticking clock toward a deadline for society deciding what to do about personal privacy.
Theoretically, humans aren’t the only potential kind of tyrants. Science fiction author Jack Williamson postulated a depressing nanny-technology in With Folded Hands, the idea for which was later borrowed by the humorous Star Trek episode I, Mudd.
Of these three areas, crime prevention is the furthest along; in particular, sidewalk cameras, license plate cameras and internet snooping are widely deployed around the world. So let’s consider the other two.
Vehicle accident prevention
Categories: Health care, Predictive modeling and advanced analytics, Public policy, Surveillance and privacy | 3 Comments |
Soft robots, Part 2 — implications
What will soft, mobile robots be able to do that previous generations cannot? A lot. But I’m particularly intrigued by two large categories:
- Inspection, maintenance and repair.
- Health care/family care assistance.
There are still many things that are hard for humans to keep in good working order, including:
- Power lines.
- Anything that’s underwater (cables, drilling platforms, etc.)
- Pipelines, ducts, and water mains (especially from the inside).
- Any kind of geographically remote power station or other installation.
Sometimes the issue is (hopefully minor) repairs. Sometimes it’s cleaning or lubrication. In some cases one might want to upgrade a structure with fixed sensors, and the “repair” is mainly putting those sensors in place. In all these cases, it seems that soft robots could eventually offer a solution. Further examples, I’m sure, could be found in factories, mines, or farms.
Of course, if there’s a maintenance/repair need, inspection is at least part of the challenge; in some cases it’s almost the whole thing. And so this technology will help lead us toward the point that substantially all major objects will be associated with consistent flows of data. Opportunities for data analysis will abound.
Categories: Health care | 5 Comments |
Notes on machine-generated data, year-end 2014
Most IT innovation these days is focused on machine-generated data (sometimes just called “machine data”), rather than human-generated. So as I find myself in the mood for another survey post, I can’t think of any better idea for a unifying theme.
1. There are many kinds of machine-generated data. Important categories include:
- Web, network and other IT logs.
- Game and mobile app event data.
- CDRs (telecom Call Detail Records).
- “Phone-home” data from large numbers of identical electronic products (for example set-top boxes).
- Sensor network output (for example from a pipeline or other utility network).
- Vehicle telemetry.
- Health care data, in hospitals.
- Digital health data from consumer devices.
- Images from public-safety camera networks.
- Stock tickers (if you regard them as being machine-generated, which I do).
That’s far from a complete list, but if you think about those categories you’ll probably capture most of the issues surrounding other kinds of machine-generated data as well.
2. Technology for better information and analysis is also technology for privacy intrusion. Public awareness of privacy issues is focused in a few areas, mainly: Read more
Notes and links, December 12, 2014
1. A couple years ago I wrote skeptically about integrating predictive modeling and business intelligence. I’m less skeptical now.
For starters:
- The predictive experimentation I wrote about over Thanksgiving calls naturally for some BI/dashboarding to monitor how it’s going.
- If you think about Nutonian’s pitch, it can be approximated as “Root-cause analysis so easy a business analyst can do it.” That could be interesting to jump to after BI has turned up anomalies. And it should be pretty easy to whip up a UI for choosing a data set and objective function to model on, since those are both things that the BI tool would know how to get to anyway.
I’ve also heard a couple of ideas about how predictive modeling can support BI. One is via my client Omer Trajman, whose startup ScalingData is still semi-stealthy, but says they’re “working at the intersection of big data and IT operations”. The idea goes something like this:
- Suppose we have lots of logs about lots of things.* Machine learning can help:
- Notice what’s an anomaly.
- Group* together things that seem to be experiencing similar anomalies.
- That can inform a BI-plus interface for a human to figure out what is happening.
Makes sense to me. (Edit: ScalingData subsequently launched, under the name Rocana.)
* The word “cluster” could have been used here in a couple of different ways, so I decided to avoid it altogether.
Finally, I’m hearing a variety of “smart ETL/data preparation” and “we recommend what columns you should join” stories. I don’t know how much machine learning there’s been in those to date, but it’s usually at least on the roadmap to make the systems (yet) smarter in the future. The end benefit is usually to facilitate BI.
2. Discussion of graph DBMS can get confusing. For example: Read more
Categories: Business intelligence, Greenplum, Hadoop, Hortonworks, Log analysis, Neo Technology and Neo4j, Nutonian, Predictive modeling and advanced analytics, RDF and graphs, WibiData | 5 Comments |
A few numbers from MapR
MapR put out a press release aggregating some customer information; unfortunately, the release is a monument to vagueness. Let me start by saying:
- I don’t know for sure, but I’m guessing Derrick Harris was incorrect in suspecting that this release was a reaction to my recent post about Hortonworks’ numbers. For one thing, press releases usually don’t happen that quickly.
- And as should be obvious from the previous point — notwithstanding that MapR is a client, I had no direct involvement in this release.
- In general, I advise clients and other vendors to put out the kind of aggregate of customer success stories found in this release. However, I would like to see more substance than MapR offered.
Anyhow, the key statement in the MapR release is:
… the number of companies that have a paid subscription for MapR now exceeds 700.
Unfortunately, that includes OEM customers as well as direct ones; I imagine MapR’s direct customer count is much lower.
In one gesture to numerical conservatism, MapR did indicate by email that it counts by overall customer organization, not by department/cluster/contract (i.e., not the way Hortonworks does). Read more
Categories: Hadoop, Health care, MapR, Market share and customer counts, Pricing, Telecommunications | 3 Comments |
Datameer at the time of Datameer 5.0
Datameer checked in, having recently announced general availability of Datameer 5.0. So far as I understood, Datameer is still clearly in the investigative analytics business, in that:
- Datameer does business intelligence, but not at human real-time speeds. Datameer query durations are sometimes sub-minute, but surely not sub-second.
- Datameer also does lightweight predictive analytics/machine learning — k-means clustering, decision trees, and so on.
Key aspects include:
- Datameer runs straight against Hadoop.
- Like many other analytic offerings, Datameer is meant to be “self-service”, for line-of-business business analysts, and includes some “data preparation”. Datameer also has had some data profiling since Datameer 4.0.
- The main way of interacting with Datameer seems to be visual analytic programming. However, I Datameer has evolved somewhat away from its original spreadsheet metaphor.
- Datameer’s primitives resemble those you’d find in SQL (e.g. JOINs, GROUPBYs). More precisely, that would be SQL with a sessionization extension; e.g., there’s a function called GROUPBYGAP.
- Datameer lets you write derived data back into Hadoop.