Streaming for Hadoop
The genesis of this post is that:
- Hortonworks is trying to revitalize the Apache Storm project, after Storm lost momentum; indeed, Hortonworks is referring to Storm as a component of Hadoop.
- Cloudera is talking up what I would call its human real-time strategy, which includes but is not limited to Flume, Kafka, and Spark Streaming. Cloudera also sees a few use cases for Storm.
- This all fits with my view that the Current Hot Subject is human real-time data freshness — for analytics, of course, since we’ve always had low latencies in short-request processing.
- This also all fits with the importance I place on log analysis.
- Cloudera reached out to talk to me about all this.
Of course, we should hardly assume that what the Hadoop distro vendors favor will be the be-all and end-all of streaming. But they are likely to at least be influential players in the area.
In the parts of the problem that Cloudera emphasizes, the main tasks that need to be addressed are: Read more
Data as an asset
We all tend to assume that data is a great and glorious asset. How solid is this assumption?
- Yes, data is one of the most proprietary assets an enterprise can have. Any of the Goldman Sachs big three* — people, capital, and reputation — are easier to lose or imitate than data.
- In many cases, however, data’s value diminishes quickly.
- Determining the value derived from owning, analyzing and using data is often tricky — but not always. Examples where data’s value is pretty clear start with:
- Industries which long have had large data-gathering research budgets, in areas such as clinical trials or seismology.
- Industries that can calculate the return on mass marketing programs, such as internet advertising or its snail-mail predecessors.
*”Our assets are our people, capital and reputation. If any of these is ever diminished, the last is the most difficult to restore.” I love that motto, even if Goldman Sachs itself eventually stopped living up to it. If nothing else, my own business depends primarily on my reputation and information.
This all raises the idea — if you think data is so valuable, maybe you should get more of it. Areas in which enterprises have made significant and/or successful investments in data acquisition include: Read more
Categories: Data mart outsourcing, eBay, Health care, Investment research and trading, Log analysis, Scientific research, Text, Web analytics | 9 Comments |
Misconceptions about privacy and surveillance
Everybody is confused about privacy and surveillance. So I’m renewing my efforts to consciousness-raise within the tech community. For if we don’t figure out and explain the issues clearly enough, there isn’t a snowball’s chance in Hades our lawmakers will get it right without us.
How bad is the confusion? Well, even Edward Snowden is getting it wrong. A Wired interview with Snowden says:
“If somebody’s really watching me, they’ve got a team of guys whose job is just to hack me,” he says. “I don’t think they’ve geolocated me, but they almost certainly monitor who I’m talking to online. Even if they don’t know what you’re saying, because it’s encrypted, they can still get a lot from who you’re talking to and when you’re talking to them.”
That is surely correct. But the same article also says:
“We have the means and we have the technology to end mass surveillance without any legislative action at all, without any policy changes.” The answer, he says, is robust encryption. “By basically adopting changes like making encryption a universal standard—where all communications are encrypted by default—we can end mass surveillance not just in the United States but around the world.”
That is false, for a myriad of reasons, and indeed is contradicted by the first excerpt I cited.
What privacy/surveillance commentators evidently keep forgetting is:
- There are many kinds of privacy-destroying information. I think people frequently overlook just how many kinds there are.
- Many kinds of organization capture that information, can share it with each other, and gain benefits from eroding or destroying privacy. Similarly, I think people overlook just how pervasive the incentive is to snoop.
- Privacy is invaded through a variety of analytic techniques applied to that information.
So closing down a few vectors of privacy attack doesn’t solve the underlying problem at all.
Worst of all, commentators forget that the correct metric for danger is not just harmful information use, but chilling effects on the exercise of ordinary liberties. But in the interest of space, I won’t reiterate that argument in this post.
Perhaps I can refresh your memory why each of those bulleted claims is correct. Major categories of privacy-destroying information (raw or derived) include:
- The actual content of your communications — phone calls, email, social media posts and more.
- The metadata of your communications — who you communicate with, when, how long, etc.
- What you read, watch, surf to or otherwise pay attention to.
- Your purchases, sales and other transactions.
- Video images, via stationary cameras, license plate readers in police cars, drones or just ordinary consumer photography.
- Monitoring via the devices you carry, such as phones or medical monitors.
- Your health and physical state, via those devices, but also inferred from, for example, your transactions or search engine entries.
- Your state of mind, which can be inferred to various extents from almost any of the other information areas.
- Your location and movements, ditto. Insurance companies also want to put monitors in cars to track your driving behavior in detail.
Categories: Health care, Predictive modeling and advanced analytics, Surveillance and privacy, Telecommunications | 2 Comments |
Notes and comments, May 6, 2014
After visiting California recently, I made a flurry of posts, several of which generated considerable discussion.
- My claim that Spark will replace Hadoop MapReduce got much Twitter attention — including some high-profile endorsements — and also some responses here.
- My MemSQL post led to a vigorous comparison of MemSQL vs. VoltDB.
- My post on hardware and storage spawned a lively discussion of Hadoop hardware pricing; even Cloudera wound up disagreeing with what I reported Cloudera as having said. 🙂 Sadly, there was less response to the part about the partial (!) end of Moore’s Law.
- My Cloudera/SQL/Impala/Hive apparently was well-balanced, in that it got attacked from multiple sides via Twitter & email. Apparently, I was too hard on Impala, I was too hard on Hive, and I was too hard on boxes full of cardboard file cards as well.
- My post on the Intel/Cloudera deal garnered a comment reminding us Dell had pushed the Intel distro.
- My CitusDB post picked up a few clarifying comments.
Here is a catch-all post to complete the set. Read more
Some stuff I’m thinking about (early 2014)
From time to time I like to do “what I’m working on” posts. From my recent blogging, you probably already know that includes:
- Hadoop (always, and please see below).
- Analytic RDBMS (ditto).
- NoSQL and NewSQL.
- Specifically, SQL-on-Hadoop
- Schema-on-need.
- Spark and other memory-centric technology, including streaming.
- Public policy, mainly but not only in the area of surveillance/privacy.
- General strategic advice for all sizes of tech company.
Other stuff on my mind includes but is not limited to:
1. Certain categories of buying organizations are inherently leading-edge.
- Internet companies have adopted Hadoop, NoSQL, NewSQL and all that en masse. Often, they won’t even look at things that are conventional or expensive.
- US telecom companies have been buying 1 each of every DBMS on the market since pre-relational days.
- Financial services firms — specifically algorithmic traders and broker-dealers — have been in their own technical world for decades …
- … as have national-security agencies …
- … as have pharmaceutical research departments.
Fine. But what really intrigues me is when more ordinary enterprises also put leading-edge technologies into production. I pester everybody for examples of that.
The games of Watson
IBM excels at game technology, most famously in Deep Blue (chess) and Watson (Jeopardy!). But except at the chip level — PowerPC — IBM hasn’t accomplished much at game/real world crossover. And so I suspect the Watson hype is far overblown.
I believe that for two main reasons. First, whenever IBM talks about big initiatives like Watson, it winds up bundling a bunch of dissimilar things together and claiming they’re a seamless whole. Second, some core Watson claims are eerily similar to artificial intelligence (AI) over-hype three or more decades past. For example, the leukemia treatment advisor that is being hopefully built in Watson now sounds a lot like MYCIN from the early 1970s, and the idea of collecting a lot of tidbits of information sounds a lot like the Cyc project. And by the way:
- MYCIN led to E-MYCIN, which led to the company Teknowledge, which raised a lot of money* but now has almost faded from memory.
- Cyc is connected to the computer science community’s standard unit of bogosity.
Categories: Health care, IBM and DB2, Scientific research, Text | 3 Comments |
DataStax/Cassandra update
Cassandra’s reputation in many quarters is:
- World-leading in the geo-distribution feature.
- Impressively scalable.
- Hard to use.
This has led competitors to use, and get away with, sales claims along the lines of “Well, if you really need geo-distribution and can’t wait for us to catch up — which we soon will! — you should use Cassandra. But otherwise, there are better choices.”
My friends at DataStax, naturally, don’t think that’s quite fair. And so I invited them — specifically Billy Bosworth and Patrick McFadin — to educate me. Here are some highlights of that exercise.
DataStax and Cassandra have some very impressive accounts, which don’t necessarily revolve around geo-distribution. Netflix, probably the flagship Cassandra user — since Cassandra inventor Facebook adopted HBase instead — actually hasn’t been using the geo-distribution feature. Confidential accounts include:
- A petabyte or so of data at a very prominent company, geo-distributed, with 800+ nodes, in a kind of block storage use case.
- A messaging application at a very prominent company, anticipated to grow to multiple data centers and a petabyte of so of data, across 1000s of nodes.
- A 300 terabyte single-data-center telecom account (which I can’t find on DataStax’s extensive customer list).
- A huge health records deal.
- A Fortune 10 company.
DataStax and Cassandra won’t necessarily win customer-brag wars versus MongoDB, Couchbase, or even HBase, but at least they’re strongly in the competition.
DataStax claims that simplicity is now a strength. There are two main parts to that surprising assertion. Read more
Hortonworks business notes
Hortonworks did a business-oriented round of outreach, talking with at least Derrick Harris and me. Notes from my call — for which Rob Bearden didn’t bother showing up — include, in no particular order:
- Hortonworks denies advanced acquisition discussions with either Microsoft and Intel. Of course, that doesn’t exactly contradict the widespread story of Intel having made an acquisition offer. Edit: I have subsequently heard, very credibly, that the denial was untrue.
- As vendors usually do, Hortonworks denies the extreme forms of Cloudera’s suggestion that Hortonworks competitive wins relate to price slashing. But Hortonworks does believe that its license fees often wind up being lower than Cloudera’s, due especially to Hortonworks offering few extra-charge items than Cloudera.
- Hortonworks used a figure of ~75 subscription customers. Edit: That figure turns out in retrospect to have been inflated. This does not include OEM sales through, for example, Teradata, Microsoft Azure, or Rackspace. However, that does include …
- … a small number of installations hosted in the cloud — e.g. ~2 on Amazon Web Services — or otherwise remotely. Also, testing in the cloud seems to be fairly frequent, and the cloud can also be a source of data ingested into Hadoop.
- Since Hortonworks a couple of times made it seem that Rackspace was an important partner, behind only Teradata and Microsoft, I finally asked why. Answers boiled down to a Rackspace Hadoop-as-a-service offering, plus joint work to improve Hadoop-on-OpenStack.
- Other Hortonworks reseller partners seem more important in terms of helping customers consume HDP (Hortonworks Data Platform), rather than for actually doing Hortonworks’ selling for it. (This is unsurprising — channel sales rarely are a path to success for a product that is also appropriately sold by a direct force.)
- Hortonworks listed its major industry sectors as:
- Web and retailing, which it identifies as one thing.
- Media.
- Telecommunications.
- Health care (various subsectors).
- Financial services, which it called “competitive” in the kind of tone that usually signifies “we lose a lot more than we win, and would love to change that”.
In Hortonworks’ view, Hadoop adopters typically start with a specific use case around a new type of data, such as clickstream, sensor, server log, geolocation, or social. Read more
More notes on predictive modeling
My July 2 comments on predictive modeling were far from my best work. Let’s try again.
1. Predictive analytics has two very different aspects.
Developing models, aka “modeling”:
- Is a big part of investigative analytics.
- May or may not be difficult to parallelize and/or integrate into an analytic RDBMS.
- May or may not require use of your whole database.
- Generally is done by humans.
- Often is done by people with special skills, e.g. “statisticians” or “data scientists”.
More precisely, some modeling algorithms are straightforward to parallelize and/or integrate into RDBMS, but many are not.
Using models, most commonly:
- Is done by machines …
- … that “score” data according to the models.
- May be done in batch or at run-time.
- Is embarrassingly parallel, and is much more commonly integrated into analytic RDBMS than modeling is.
2. Some people think that all a modeler needs are a few basic algorithms. (That’s why, for example, analytic RDBMS vendors are proud of integrating a few specific modeling routines.) Other people think that’s ridiculous. Depending on use case, either group can be right.
3. If adoption of DBMS-integrated modeling is high, I haven’t noticed.
Categories: Ayasdi, Data warehousing, Hadoop, Health care, IBM and DB2, KXEN, Predictive modeling and advanced analytics, SAS Institute | 6 Comments |
Analytic application themes
I talk with a lot of companies, and repeatedly hear some of the same application themes. This post is my attempt to collect some of those ideas in one place.
1. So far, the buzzword of the year is “real-time analytics”, generally with “operational” or “big data” included as well. I hear variants of that positioning from NewSQL vendors (e.g. MemSQL), NoSQL vendors (e.g. AeroSpike), BI stack vendors (e.g. Platfora), application-stack vendors (e.g. WibiData), log analysis vendors (led by Splunk), data management vendors (e.g. Cloudera), and of course the CEP industry.
Yeah, yeah, I know — not all the named companies are in exactly the right market category. But that’s hard to avoid.
Why this gold rush? On the demand side, there’s a real or imagined need for speed. On the supply side, I’d say:
- There are vast numbers of companies offering data-management-related technology. They need ways to differentiate.
- Doing analytics at short-request speeds is an obvious data-management-related challenge, and not yet comprehensively addressed.
2. More generally, most of the applications I hear about are analytic, or have a strong analytic aspect. The three biggest areas — and these overlap — are:
- Customer interaction
- Network and sensor monitoring
- Game and mobile application back-ends
Also arising fairly frequently are:
- Algorithmic trading
- Anti-fraud
- Risk measurement
- Law enforcement/national security
- Healthcare
- Stakeholder-facing analytics
I’m hearing less about quality, defect tracking, and equipment maintenance than I used to, but those application areas have anyway been ebbing and flowing for decades.