Notes on the transition to the cloud
1. The cloud is super-hot. Duh. And so, like any hot buzzword, “cloud” means different things to different marketers. Four of the biggest things that have been called “cloud” are:
- The Amazon cloud, Microsoft Azure, and their competitors, aka public cloud.
- Software as a service, aka SaaS.
- Co-location in off-premises data centers, aka colo.
- On-premises clusters (truly on-prem or colo as the case may be) designed to run a broad variety of applications, aka private cloud.
Further, there’s always the idea of hybrid cloud, in which a vendor peddles private cloud systems (usually appliances) running similar technology stacks to what they run in their proprietary public clouds. A number of vendors have backed away from such stories, but a few are still pushing it, including Oracle and Microsoft.
This is a good example of Monash’s Laws of Commercial Semantics.
2. Due to economies of scale, only a few companies should operate their own data centers, aka true on-prem(ises). The rest should use some combination of colo, SaaS, and public cloud.
This fact now seems to be widely understood.
Basho and Riak
Basho was on my (very short) blacklist of companies with whom I refuse to speak, because they have lied about the contents of previous conversations. But Tony Falco et al. are long gone from the company. So when Basho’s new management team reached out, I took the meeting.
For starters:
- Basho management turned over significantly 1-2 years ago. The main survivors from the old team are 1 each in engineering, sales, and services.
- Basho moved its headquarters to Bellevue, WA. (You get one guess as to where the new CEO lives.) Engineering operations are very distributed geographically.
- Basho claims that it is much better at timely product shipments than it used to be. Its newest product has a planned (or at least hoped-for) 8-week cadence for point releases.
- Basho’s revenue is ~90% subscription.
- Basho claims >200 enterprise clients, vs. 100-120 when new management came in. Unfortunately, I forgot to ask the usual questions about divisions vs. whole organizations, OEM sell-through vs. direct, etc.
- Basho claims an average contract value of >$100K, typically over 2-3 years. $9 million of that (which would be close to half the total, actually), comes from 2 particular deals of >$4 million each.
Basho’s product line has gotten a bit confusing, but as best I understand things the story is:
- There’s something called Riak Core, which isn’t even a revenue-generating product. However, it’s an open source project with some big users (e.g. Goldman Sachs, Visa), and included in pretty much everything else Basho promotes.
- Riak KV is the key-value store previously known as Riak. It generates the lion’s share of Basho’s revenue.
- Riak S2 is an emulation of Amazon S3. Basho thinks that Riak KV loses efficiency when objects get bigger than 1 MB or so, and that’s when you might want to use Riak S2 in addition or instead.
- Riak TS is for time series, and just coming out now.
- Also in the mix are some (extra charge) connectors for Redis and Spark. Presumably, there are more of these to come.
- There’s an umbrella marketing term of “Basho Data Platform”.
Technical notes on some of that include: Read more
Consumer data management
Don’t plan to fish in your personal data lake.
Perhaps the biggest mess in all of IT is the management of individual consumers’ data. Our electronic data is thoroughly scattered. Most individual portions are poorly managed. There’s no integration. The data that’s on paper is even worse. For example:
- Do you have access to your medical records? Do you even know when you were last vaccinated for what?
- Several enterprises have comprehensive records of all your credit card purchases, in easy-to-analyze form. Do you have such records too?
- How easily can you find old emails? How about old paper correspondence?
For the most part, the technology community is barely trying to solve those problems. But even when it does try, success is mixed at best. For example:
- People generally hate iCloud and iTunes. Even usability icon Apple can’t get its data management apps right.
- Intuit is divesting flagship product Quicken.
- Evernote seems to be in trouble, although there are evidently execution issues involved.
- How is Dropbox’s consumer business doing, especially from a revenue standpoint?
And those are some of the most successful names.
There are numerous reasons for this dismal state of affairs. Read more
Categories: Health care | 1 Comment |
IT-centric notes on the future of health care
It’s difficult to project the rate of IT change in health care, because:
- Health care is suffused with technology — IT, medical device and biotech alike — and hence has the potential for rapid change. However, it is also the case that …
- … health care is heavily bureaucratic, political and regulated.
Timing aside, it is clear that health care change will be drastic. The IT part of that starts with vastly comprehensive electronic health records, which will be accessible (in part or whole as the case may be) by patients, care givers, care payers and researchers alike. I expect elements of such records to include:
- The human-generated part of what’s in ordinary paper health records today, but across a patient’s entire lifetime. This of course includes notes created by doctors and other care-givers.
- Large amounts of machine-generated data, including:
- The results of clinical tests. Continued innovation can be expected in testing, for reasons that include:
- Most tests exploit electronic technology. Progress in electronics is intense.
- Biomedical research is itself intense.
- In particular, most research technologies (for example gene sequencing) can be made cheap enough over time to be affordable clinically.
- The output of consumer health-monitoring devices — e.g. Fitbit and its successors. The buzzword here is “quantified self”, but what it boils down to is that every moment of our lives will be measured and recorded.
- The results of clinical tests. Continued innovation can be expected in testing, for reasons that include:
These vastly greater amounts of data cited above will allow for greatly changed analytics.
Read more
Notes, links and comments, May 2, 2015
I’m going to be out-of-sorts this week, due to a colonoscopy. (Between the prep, the procedure, and the recovery, that’s a multi-day disablement.) In the interim, here’s a collection of links, quick comments and the like.
1. Are you an engineer considering a start-up? This post is for you. It’s based on my long experience in and around such scenarios, and includes a section on “Deadly yet common mistakes”.
2. There seems to be a lot of confusion regarding the business model at my clients Databricks. Indeed, my own understanding of Databricks’ on-premises business has changed recently. There are no changes in my beliefs that:
- Databricks does not directly license or support on-premises Spark users. Rather …
- … it helps partner companies to do so, where:
- Examples of partner companies include usual-suspect Hadoop distribution vendors, and DataStax.
- “Help” commonly includes higher-level support.
However, I now get the impression that revenue from such relationships is a bigger deal to Databricks than I previously thought.
Databricks, by the way, has grown to >50 people.
3. DJ Patil and Ruslan Belkin apparently had a great session on lessons learned, covering a lot of ground. Many of the points are worth reading, but one in particular echoed something I’m hearing lots of places — “Data is super messy, and data cleanup will always be literally 80% of the work.” Actually, I’d replace the “always” by something like “very often”, and even that mainly for newish warehouses, data marts or datasets. But directionally the comment makes a whole lot of sense.
Categories: Data integration and middleware, Databricks, Spark and BDAS, DataStax, Hadoop, Health care, Investment research and trading, Text | Leave a Comment |
Cask and CDAP
For starters:
- Continuuity toured in 2012 and touted its “app server for Hadoop” technology.
- Continuuity recently changed its name to Cask and went open source.
- Cask’s product is now called CDAP (Cask Data Application Platform). It’s still basically an app server for Hadoop and other “big data” — ouch do I hate that phrase — data stores.
- Cask and Cloudera partnered.
- I got a more technical Cask briefing this week.
Also:
- App servers are a notoriously amorphous technology. The focus of how they’re used can change greatly every couple of years.
- Partly for that reason, I was unimpressed by Continuuity’s original hype-filled positioning.
So far as I can tell:
- Cask’s current focus is to orchestrate job flows, with lots of data mappings.
- This is supposed to provide lots of developer benefits, for fairly obvious reasons. Those are pitched in terms of an integration story, more in a “free you from the mess of a many-part stack” sense than strictly in terms of data integration.
- CDAP already has a GUI to monitor what’s going on. A GUI to specify workflows is coming very soon.
- CDAP doesn’t consume a lot of cycles itself, and hence isn’t a real risk for unpleasant overhead, if “overhead” is narrowly defined. Rather, performance drags could come from …
- … sub-optimal choices in data mapping, database design or workflow composition.
Information technology for personal safety
There are numerous ways that technology, now or in the future, can significantly improve personal safety. Three of the biggest areas of application are or will be:
- Crime prevention.
- Vehicle accident prevention.
- Medical emergency prevention and response.
Implications will be dramatic for numerous industries and government activities, including but not limited to law enforcement, automotive manufacturing, infrastructure/construction, health care and insurance. Further, these technologies create a near-certainty that individuals’ movements and status will be electronically monitored in fine detail. Hence their development and eventual deployment constitutes a ticking clock toward a deadline for society deciding what to do about personal privacy.
Theoretically, humans aren’t the only potential kind of tyrants. Science fiction author Jack Williamson postulated a depressing nanny-technology in With Folded Hands, the idea for which was later borrowed by the humorous Star Trek episode I, Mudd.
Of these three areas, crime prevention is the furthest along; in particular, sidewalk cameras, license plate cameras and internet snooping are widely deployed around the world. So let’s consider the other two.
Vehicle accident prevention
Categories: Health care, Predictive modeling and advanced analytics, Public policy, Surveillance and privacy | 3 Comments |
Soft robots, Part 2 — implications
What will soft, mobile robots be able to do that previous generations cannot? A lot. But I’m particularly intrigued by two large categories:
- Inspection, maintenance and repair.
- Health care/family care assistance.
There are still many things that are hard for humans to keep in good working order, including:
- Power lines.
- Anything that’s underwater (cables, drilling platforms, etc.)
- Pipelines, ducts, and water mains (especially from the inside).
- Any kind of geographically remote power station or other installation.
Sometimes the issue is (hopefully minor) repairs. Sometimes it’s cleaning or lubrication. In some cases one might want to upgrade a structure with fixed sensors, and the “repair” is mainly putting those sensors in place. In all these cases, it seems that soft robots could eventually offer a solution. Further examples, I’m sure, could be found in factories, mines, or farms.
Of course, if there’s a maintenance/repair need, inspection is at least part of the challenge; in some cases it’s almost the whole thing. And so this technology will help lead us toward the point that substantially all major objects will be associated with consistent flows of data. Opportunities for data analysis will abound.
Categories: Health care | 5 Comments |
Notes on machine-generated data, year-end 2014
Most IT innovation these days is focused on machine-generated data (sometimes just called “machine data”), rather than human-generated. So as I find myself in the mood for another survey post, I can’t think of any better idea for a unifying theme.
1. There are many kinds of machine-generated data. Important categories include:
- Web, network and other IT logs.
- Game and mobile app event data.
- CDRs (telecom Call Detail Records).
- “Phone-home” data from large numbers of identical electronic products (for example set-top boxes).
- Sensor network output (for example from a pipeline or other utility network).
- Vehicle telemetry.
- Health care data, in hospitals.
- Digital health data from consumer devices.
- Images from public-safety camera networks.
- Stock tickers (if you regard them as being machine-generated, which I do).
That’s far from a complete list, but if you think about those categories you’ll probably capture most of the issues surrounding other kinds of machine-generated data as well.
2. Technology for better information and analysis is also technology for privacy intrusion. Public awareness of privacy issues is focused in a few areas, mainly: Read more
A few numbers from MapR
MapR put out a press release aggregating some customer information; unfortunately, the release is a monument to vagueness. Let me start by saying:
- I don’t know for sure, but I’m guessing Derrick Harris was incorrect in suspecting that this release was a reaction to my recent post about Hortonworks’ numbers. For one thing, press releases usually don’t happen that quickly.
- And as should be obvious from the previous point — notwithstanding that MapR is a client, I had no direct involvement in this release.
- In general, I advise clients and other vendors to put out the kind of aggregate of customer success stories found in this release. However, I would like to see more substance than MapR offered.
Anyhow, the key statement in the MapR release is:
… the number of companies that have a paid subscription for MapR now exceeds 700.
Unfortunately, that includes OEM customers as well as direct ones; I imagine MapR’s direct customer count is much lower.
In one gesture to numerical conservatism, MapR did indicate by email that it counts by overall customer organization, not by department/cluster/contract (i.e., not the way Hortonworks does). Read more
Categories: Hadoop, Health care, MapR, Market share and customer counts, Pricing, Telecommunications | 3 Comments |