Analytic technologies

Discussion of technologies related to information query and analysis. Related subjects include:

December 16, 2014

WibiData’s approach to predictive modeling and experimentation

A conversation I have too often with vendors goes something like:

That was the genesis of some tidbits I recently dropped about WibiData and predictive modeling, especially but not only in the area of experimentation. However, Wibi just reversed course and said it would be OK for me to tell more or less the full story, as long as I note that we’re talking about something that’s still in beta test, with all the limitations (to the product and my information alike) that beta implies.

As you may recall:

With that as background, WibiData’s approach to predictive modeling as of its next release will go something like this: Read more

December 12, 2014

Notes and links, December 12, 2014

1. A couple years ago I wrote skeptically about integrating predictive modeling and business intelligence. I’m less skeptical now.

For starters:

I’ve also heard a couple of ideas about how predictive modeling can support BI. One is via my client Omer Trajman, whose startup ScalingData is still semi-stealthy, but says they’re “working at the intersection of big data and IT operations”. The idea goes something like this:

Makes sense to me. (Edit: ScalingData subsequently launched, under the name Rocana.)

* The word “cluster” could have been used here in a couple of different ways, so I decided to avoid it altogether.

Finally, I’m hearing a variety of “smart ETL/data preparation” and “we recommend what columns you should join” stories. I don’t know how much machine learning there’s been in those to date, but it’s usually at least on the roadmap to make the systems (yet) smarter in the future. The end benefit is usually to facilitate BI.

2. Discussion of graph DBMS can get confusing. For example: Read more

November 30, 2014

Thoughts and notes, Thanksgiving weekend 2014

I’m taking a few weeks defocused from work, as a kind of grandpaternity leave. That said, the venue for my Dances of Infant Calming is a small-but-nice apartment in San Francisco, so a certain amount of thinking about tech industries is inevitable. I even found time last Tuesday to meet or speak with my clients at WibiData, MemSQL, Cloudera, Citus Data, and MongoDB. And thus:

1. I’ve been sloppy in my terminology around “geo-distribution”, in that I don’t always make it easy to distinguish between:

The latter case can be subdivided further depending on whether multiple copies of the data can accept first writes (aka active-active, multi-master, or multi-active), or whether there’s a clear single master for each part of the database.

What made me think of this was a phone call with MongoDB in which I learned that the limit on number of replicas had been raised from 12 to 50, to support the full-replication/latency-reduction use case.

2. Three years ago I posted about agile (predictive) analytics. One of the points was:

… if you change your offers, prices, ad placement, ad text, ad appearance, call center scripts, or anything else, you immediately gain new information that isn’t well-reflected in your previous models.

Subsequently I’ve been hearing more about predictive experimentation such as bandit testing. WibiData, whose views are influenced by a couple of Very Famous Department Store clients (one of which is Macy’s), thinks experimentation is quite important. And it could be argued that experimentation is one of the simplest and most direct ways to increase the value of your data.

3. I’d further say that a number of developments, trends or possibilities I’m seeing are or could be connected. These include agile and experimental predictive analytics in general, as noted in the previous point, along with:  Read more

November 15, 2014

Technical differentiation

I commonly write about real or apparent technical differentiation, in a broad variety of domains. But actually, computers only do a couple of kinds of things:

And hence almost all IT product differentiation fits into two buckets:

As examples of this reductionism, please consider:

Similar stories are true about application software, or about anything that has an API (Application Programming Interface) or SDK (Software Development Kit).

Yes, all my examples are in software. That’s what I focus on. If I wanted to be more balanced in including hardware or data centers, I might phrase the discussion a little differently — but the core points would still remain true.

What I’ve said so far should make more sense if we combine it with the observation that differentiation is usually restricted to particular domains. Read more

November 2, 2014

Notes on predictive modeling, November 2, 2014

Following up on my notes on predictive modeling post from three weeks ago, I’d like to tackle some areas of recurring confusion.

Why are we modeling?

Ultimately, there are two reasons to model some aspect of your business:

How precise do models need to be?

Use cases vary greatly with respect to the importance of modeling precision. If you’re doing an expensive mass mailing, 1% additional accuracy is a big deal. But if you’re doing root cause analysis, a 10% error may be immaterial.

Who is doing the work?

It is traditional to have a modeling department, of “data scientists” or SAS programmers as the case may be. While it seems cool to put predictive modeling straight in the hands of business users — some business users, at least — it’s rare for them to use predictive modeling tools more sophisticated than Excel. For example, KXEN never did all that well.

That said, I support the idea of putting more modeling in the hands of business users. Just be aware that doing so is still a small business at this time.

“Operationalizing” predictive models

The topic of “operationalizing” models arises often, and it turns out to be rather complex. Usually, to operationalize a model, you need: Read more

November 2, 2014

Analytics for lots and lots of business users

A common marketing theme in the 2010s decade has been to claim that you make analytics available to many business users, as opposed to your competition, who only make analytics available to (pick one):

Versions of this claim were also common in the 1970s, 1980s, 1990s and 2000s.

Some of that is real. In particular:

Even so, for most analytic tools, power users tend to be:

Asserting otherwise is rarely more than marketing hype.

Related link

October 26, 2014

Datameer at the time of Datameer 5.0

Datameer checked in, having recently announced general availability of Datameer 5.0. So far as I understood, Datameer is still clearly in the investigative analytics business, in that:

Key aspects include:

Read more

October 22, 2014

Is analytic data management finally headed for the cloud?

It seems reasonable to wonder whether analytic data management is headed for the cloud. In no particular order:

Read more

October 22, 2014

Snowflake Computing

I talked with the Snowflake Computing guys Friday. For starters:

Much of the Snowflake story can be summarized as cloud/elastic/simple/cheap.*

*Excuse me — inexpensive. Companies rarely like their products to be labeled as “cheap”.

In addition to its purely relational functionality, Snowflake accepts poly-structured data. Notes on that start:

I don’t know enough details to judge whether I’d call that an example of schema-on-need.

A key element of Snowflake’s poly-structured data story seems to be lateral views. I’m not too clear on that concept, but I gather: Read more

October 13, 2014

Context for Cloudera

Hadoop World/Strata is this week, so of course my clients at Cloudera will have a bunch of announcements. Without front-running those, I think it might be interesting to review the current state of the Cloudera product line. Details may be found on the Cloudera product comparison page. Examining those details helps, I think, with understanding where Cloudera does and doesn’t place sales and marketing focus, which given Cloudera’s Hadoop market stature is in my opinion an interesting thing to analyze.

So far as I can tell (and there may be some errors in this, as Cloudera is not always accurate in explaining the fine details):

In analyzing all this, I’m focused on two particular aspects:

Read more

← Previous PageNext Page →

Feed: DBMS (database management system), DW (data warehousing), BI (business intelligence), and analytics technology Subscribe to the Monash Research feed via RSS or email:

Login

Search our blogs and white papers

Monash Research blogs

User consulting

Building a short list? Refining your strategic plan? We can help.

Vendor advisory

We tell vendors what's happening -- and, more important, what they should do about it.

Monash Research highlights

Learn about white papers, webcasts, and blog highlights, by RSS or email.