Business intelligence
Analysis of companies, products, and user strategies in the area of business intelligence. Related subjects include:
- Data warehousing
- Business Objects
- Cognos
- QlikTech
- (in Text Technologies) Text mining
- (in Text Technologies) Text analytics/business intelligence integration
- (in The Monash Report) Strategic issues in business intelligence
- (in Software Memories) Historical notes on business intelligence
Notes and cautions about new analytic technology
As previously noted, I headlined Aster’s Big Data Summit in Washington, DC last Thursday. More than others, that talk did reuse material I’d presented before. I promised the audience that when I got back I’d put up a blog post linking to supporting material for the talk.
Part of the time, I talked about things I’ve written about before. For example: Read more
Categories: Aster Data, Business intelligence, Data warehousing, Predictive modeling and advanced analytics, Presentations | 3 Comments |
Introduction to Datameer
Elder care issues have flared up with a vengeance, so I’m not going to be blogging much for a while, and surely not at any length. That said, my first post about Datameer was never going to be very long, so lets get right to it:
- Datameer offers a business intelligence and analytics stack that runs on any distribution of Hadoop.
- Datameer is still building a lot of features that it talks about, for target release in (I think) the fall.
- Datameer’s pride and joy is its user interface. Very laudably for a software start-up, Datameer claims to have spent considerable time with professional user interface designers.
- Datameer’s core user interface metaphor is formula definition via a spreadsheet.
- Datameer includes 124 functions one can use in these formulae, ranging from math stuff to text tokenization.
- Datameer does some straight BI, with 4 kinds of “visualization” headed for 20 kinds later. But if you want to do hard-core BI, use Datameer to dump data into an RDBMS and then use the BI tool of your choice. (Datameer’s messaging does tend to obscure or even contradict that point.)
- Rather, Datameer seems to be designed for the classic MapReduce use cases of ETL and heavy data crunching.
- Datameer’s messaging includes a bit about “Datameer is real-time, even though Hadoop is generally thought of as batch.” So far as I can tell, what that boils down to is …
- … Datameer will let you examine sample and/or partial query results before a full Hadoop run is over. Apparently, there are three different ways Datameer lets you do this:
- You can truly query against a sample of the data set.
- You can query against intermediate results, when only some stages of the Hadoop process have already been run.
- You can drill down into a “distributed index,” whatever the heck that means when Datameer says it.
- Datameer will let you import data from 15 or so different kinds of sources, SQL, NoSQL, and file system alike.
Categories: Analytic technologies, Business intelligence, Datameer, EAI, EII, ETL, ELT, ETLT, Hadoop, MapReduce | 3 Comments |
Notes on the evolution of OLTP database management systems
The past few years have seen a spate of startups in the analytic DBMS business. Netezza, Vertica, Greenplum, Aster Data and others are all reasonably prosperous, alongside older specialty product vendors Teradata and Sybase (the Sybase IQ part). OLTP (OnLine Transaction Processing) and general purpose DBMS startups, however, have not yet done as well, with such success as there has been (MySQL, Intersystems Cache’, solidDB’s exit, etc.) generally accruing to products that originated in the 20th Century.
Nonetheless, OLTP/general-purpose data management startup activity has recently picked up, targeting what I see as some very real opportunities and needs. So as a jumping-off point for further writing, I thought it might be interesting to collect a few observations about the market in one place. These include:
- Big-brand OLTP/general-purpose DBMS have more “stickiness” than analytic DBMS.
- By number, most of an enterprise’s OLTP/general-purpose databases are low-volume and low-value.
- Most interesting new OLTP/general-purpose data management products are either MySQL-based or NoSQL.
- It’s not yet clear whether MySQL will prevail over MySQL forks, or vice-versa, or whether they will co-exist.
- The era of silicon-centric relational DBMS is coming.
- The emphasis on scale-out and reducing the cost of joins spans the NoSQL and SQL-based worlds.
- Users’ instance on “free” could be a major problem for OLTP DBMS innovation.
I shall explain. Read more
Three kinds of software innovation, and whether patents could possibly work for them
In connection with an attempt to articulate my views on software patents (more on those below), I was thinking about the different ways in which software development can be innovative. And it turns out that most forms of software innovation can, at their core, be assigned to one or more of three overlapping categories: Read more
Categories: Analytic technologies, Business intelligence, Cloud computing, Data warehousing, Parallelization, Software as a Service (SaaS), Theory and architecture | 5 Comments |
Data exploration vs. data visualization
I’ve tended to conflate data exploration and data visualization, and I’m far from alone in doing so. But a recent Economist article is a useful reminder that they aren’t exactly the same thing. Read more
Categories: Analytic technologies, Business intelligence | 5 Comments |
Intelligent Enterprise’s Editors’/Editor’s Choice list for 2010
As he has before, Intelligent Enterprise Editor Doug Henschen
- Personally selected annual lists of 12 “Most influential” companies and 36 “Companies to watch” in analytics- and database-related sectors.
- Made it clear that these are his personal selections.
- Nonetheless has called it an Editors’ Choice list, rather than Editor’s Choice. 🙂
(Actually, he’s really called it an “award.”)
Open issues in database and analytic technology
The last part of my New England Database Summit talk was on open issues in database and analytic technology. This was closely intertwined with the previous section, and also relied on a lot that I’ve posted here. So I’ll just put up a few notes on that part, with lots of linkage to prior discussion of the same points. Read more
Interesting trends in database and analytic technology
My project for the day is blogging based on my “Database and analytic technology: State of the union” talk of a few days ago. (I called it that because of when it was given, because it mixed prescriptive and descriptive elements, and because I wanted to call attention to the fact that I cover the union of database and analytic technologies – the intersection of those two sectors is an area of particular focus, but is far from the whole of my coverage.)
One section covered recent/ongoing/near-future trends that I thought were particularly interesting, including: Read more
Research agenda for 2010
As you may have noticed, I’ve been posting less research/analysis in November and December than during some other periods. In no particular order, reasons have included: Read more
Introduction to Gooddata
Around the end of the Cold War, Esther Dyson took it upon herself to go repeatedly to Eastern Europe and do a lot of rah-rah and catalysis, hoping to spark software and other computer entrepreneurs. I don’t know how many people’s lives she significantly affected – I’d guess it’s actually quite a few – but in any case the number is not zero. Roman Stanek, who has built and sold a couple of software business, cites her as a key influence setting him on his path.
Roman’s latest venture is business intelligence firm Gooddata. Gooddata was founded in 2007 and has been soliciting and getting attention for a while, so I was surprised to learn that Gooddata officially launched just a few weeks ago. Anyhow, some less technical highlights of the Gooddata story include: Read more