Business intelligence
Analysis of companies, products, and user strategies in the area of business intelligence. Related subjects include:
- Data warehousing
- Business Objects
- Cognos
- QlikTech
- (in Text Technologies) Text mining
- (in Text Technologies) Text analytics/business intelligence integration
- (in The Monash Report) Strategic issues in business intelligence
- (in Software Memories) Historical notes on business intelligence
Analytics on the edge?
There’s a theory going around to the effect that:
- Compute power is and will be everywhere, for example in cars, robots, medical devices or microwave ovens. Let’s refer to these platforms collectively as “real-world appliances”.
- Much more data will be created on these platforms than can reasonably be sent back to centralized/cloudy servers.
- Therefore, cloud-centric architectures will soon be obsolete, perhaps before they’re ever dominant in the first place.
There’s enough truth to all that to make it worth discussing. But the strong forms of the claims seem overblown.
1. This story doesn’t even make sense except for certain new classes of application. Traditional business applications run all over the world, in dedicated or SaaSy modes as the case may be. E-commerce is huge. So is content delivery. Architectures for all those things will continue to evolve, but what we have now basically works.
2. When it comes to real-world appliances, this story is partially accurate. An automobile is a rolling network of custom Linux systems, each running hand-crafted real-time apps, a few of which also have minor requirements for remote connectivity. That’s OK as far as it goes, but there could be better support for real-time operational analytics. If something as flexible as Spark were capable of unattended operation, I think many engineers of real-world appliances would find great ways to use it.
3. There’s a case to be made for something better yet. I think the argument is premature, but it’s worth at least a little consideration. Read more
The data security mess
A large fraction of my briefings this year have included a focus on data security. This is the first year in the past 35 that that’s been true.* I believe that reasons for this trend include:
- Security is an important aspect of being “enterprise-grade”. Other important checkboxes have been largely filled in. Now it’s security’s turn.
- A major platform shift, namely to the cloud, is underway or at least being planned for. Security is an important thing to think about as that happens.
- The cloud even aside, technology trends have created new ways to lose data, which security technology needs to address.
- Traditionally paranoid industries are still paranoid.
- Other industries are newly (and rightfully) terrified of exposing customer data.
- My clients at Cloudera thought they had a chance to get significant messaging leverage from emphasizing security. So far, it seems that they were correct.
*Not really an exception: I did once make it a project to learn about classic network security, including firewall appliances and so on.
Certain security requirements, desires or features keep coming up. These include (and as in many of my lists, these overlap):
- Easy, comprehensive access control. More on this below.
- Encryption. If other forms of security were perfect, encryption would never be needed. But they’re not.
- Auditing. Ideally, auditing can alert you to trouble before (much) damage is done. If not, then it can at least help you do proactive damage control in the face of breach.
- Whatever regulators mandate.
- Whatever is generally regarded as best practices. Security “best practices” generally keep enterprises out of legal and regulatory trouble, or at least minimize same. They also keep employees out of legal and career trouble, or minimize same. Hopefully, they even keep data safe.
- Whatever the government is known to use. This is a common proxy for “best practices”.
More specific or extreme requirements include: Read more
Categories: Business intelligence, Data warehousing, EAI, EII, ETL, ELT, ETLT, Hadoop, QlikTech and QlikView, Tableau Software | 4 Comments |
Interana
Interana has an interesting story, in technology and business model alike. For starters:
- Interana does ad-hoc event series analytics, which they call “interactive behavioral analytics solutions”.
- Interana has a full-stack analytic offering, include:
- Its own columnar DBMS …
- … which has a non-SQL DML (Data Manipulation Language) meant to handle event series a lot more fluently than SQL does, but which the user is never expected to learn because …
- … there also are BI-like visual analytics tools that support plenty of drilldown.
- Interana sells all this to “product” departments rather than marketing, because marketing doesn’t sufficiently value Interana’s ad-hoc query flexibility.
- Interana boasts >40 customers, with annual subscription fees ranging from high 5 figures to low 7 digits.
And to be clear — if we leave aside any questions of marketing-name sizzle, this really is business intelligence. The closest Interana comes to helping with predictive modeling is giving its ad-hoc users inspiration as to where they should focus their modeling attention.
Interana also has an interesting twist in its business model, which I hope can be used successfully by other enterprise software startups as well. Read more
Analyzing the right data
0. A huge fraction of what’s important in analytics amounts to making sure that you are analyzing the right data. To a large extent, “the right data” means “the right subset of your data”.
1. In line with that theme:
- Relational query languages, at their core, subset data. Yes, they all also do arithmetic, and many do more math or other processing than just that. But it all starts with the set theory.
- Underscoring the power of this approach, other data architectures over which analytics is done usually wind up with SQL or “SQL-like” language access as well.
2. Business intelligence interfaces today don’t look that different from what we had in the 1980s or 1990s. The biggest visible* changes, in my opinion, have been in the realm of better drilldown, ala QlikView and then Tableau. Drilldown, of course, is the main UI for business analysts and end users to subset data themselves.
*I used the word “visible” on purpose. The advances at the back end have been enormous, and much of that redounds to the benefit of BI.
3. I wrote 2 1/2 years ago that sophisticated predictive modeling commonly fit the template:
- Divide your data into clusters.
- Model each cluster separately.
That continues to be tough work. Attempts to productize shortcuts have not caught fire.
Monitoring
A huge fraction of analytics is about monitoring. People rarely want to frame things in those terms; evidently they think “monitoring” sounds boring or uncool. One cost of that silence is that it’s hard to get good discussions going about how monitoring should be done. But I’m going to try anyway, yet again. 🙂
Business intelligence is largely about monitoring, and the same was true of predecessor technologies such as green paper reports or even pre-computer techniques. Two of the top uses of reporting technology can be squarely described as monitoring, namely:
- Watching whether trends are continuing or not.
- Seeing if there are any events — actual or impending as the case may be — that call for response, in areas such as:
- Machine breakages (computer or general metal alike).
- Resource shortfalls (e.g. various senses of “inventory”).
Yes, monitoring-oriented BI needs investigative drilldown, or else it can be rather lame. Yes, purely investigative BI is very important too. But monitoring is still the heart of most BI desktop installations.
Predictive modeling is often about monitoring too. It is common to use statistics or machine learning to help you detect and diagnose problems, and many such applications have a strong monitoring element.
I.e., you’re predicting trouble before it happens, when there’s still time to head it off.
As for incident response, in areas such as security — any incident you respond to has to be noticed first Often, it’s noticed through analytic monitoring.
Hopefully, that’s enough of a reminder to establish the great importance of analytics-based monitoring. So how can the practice be improved? At least three ways come to mind, and only one of those three is getting enough current attention.
Introduction to SequoiaDB and SequoiaCM
For starters, let me say:
- SequoiaDB, the company, is my client.
- SequoiaDB, the product, is the main product of SequoiaDB, the company.
- SequoiaDB, the company, has another product line SequoiaCM, which subsumes SequoiaDB in content management use cases.
- SequoiaDB, the product, is fundamentally a JSON data store. But it has a relational front end …
- … and is usually sold for RDBMS-like use cases …
- … except when it is sold as part of SequoiaCM, which adds in a large object/block store and a content-management-oriented library.
- SequoiaDB’s products are open source.
- SequoiaDB’s largest installation seems to be 2 PB across 100 nodes; that includes block storage.
- Figures for DBMS-only database sizes aren’t as clear, but the sweet spot of the cluster-size range for such use cases seems to be 6-30 nodes.
Also:
- SequoiaDB, the company, was founded in Toronto, by former IBM DB2 folks.
- Even so, it’s fairly accurate to view SequoiaDB as a Chinese company. Specifically:
- SequoiaDB’s founders were Chinese nationals.
- Most of them went back to China.
- Other employees to date have been entirely Chinese.
- Sales to date have been entirely in China, but SequoiaDB has international aspirations
- SequoiaDB has >100 employees, a large majority of which are split fairly evenly between “engineering” and “implementation and technical support”.
- SequoiaDB’s marketing (as opposed to sales) department is astonishingly tiny.
- SequoiaDB cites >100 subscription customers, including 10 in the global Fortune 500, a large fraction of which are in the banking sector. (Other sectors mentioned repeatedly are government and telecom.)
Unfortunately, SequoiaDB has not captured a lot of detailed information about unpaid open source production usage.
Coordination, the underused “C” word
I’d like to argue that a single frame can be used to view a lot of the issues that we think about. Specifically, I’m referring to coordination, which I think is a clearer way of characterizing much of what we commonly call communication or collaboration.
It’s easy to argue that computing, to an overwhelming extent, is really about communication. Most obviously:
- Data is constantly moving around — across wide area networks, across local networks, within individual boxes, or even within particular chips.
- Many major developments are almost purely about communication. The most important computing device today may be a telephone. The World Wide Web is essentially a publishing platform. Social media are huge. Etc.
Indeed, it’s reasonable to claim:
- When technology creates new information, it’s either analytics or just raw measurement.
- Everything else is just moving information around, and that’s communication.
A little less obvious is the much of this communication could be alternatively described as coordination. Some communication has pure consumer value, such as when we talk/email/Facebook/Snapchat/FaceTime with loved ones. But much of the rest is for the purpose of coordinating business or technical processes.
Among the technical categories that boil down to coordination are:
- Operating systems.
- Anything to do with distributed computing.
- Anything to do with system or cluster management.
- Anything that’s called “collaboration”.
That’s a lot of the value in “platform” IT right there. Read more
Categories: Business intelligence, Predictive modeling and advanced analytics, Public policy | 3 Comments |
Rapid analytics
“Real-time” technology excites people, and has for decades. Yet the actual, useful technology to meet “real-time” requirements remains immature, especially in cases which call for rapid human decision-making. Here are some notes on that conundrum.
1. I recently posted that “real-time” is getting real. But there are multiple technology challenges involved, including:
- General streaming. Some of my posts on that subject are linked at the bottom of my August post on Flink.
- Low-latency ingest of data into structures from which it can be immediately analyzed. That helps drive the (re)integration of operational data stores, analytic data stores, and other analytic support — e.g. via Spark.
- Business intelligence that can be used quickly enough. This is a major ongoing challenge. My clients at Zoomdata may be thinking about this area more clearly than most, but even they are still in the early stages of providing what users need.
- Advanced analytics that can be done quickly enough. Answers there may come through developments in anomaly management, but that area is still in its super-early days.
- Alerting, which has been under-addressed for decades. Perhaps the anomaly management vendors will finally solve it.
2. In early 2011, I coined the phrase investigative analytics, about which I said three main things: Read more
Notes on anomaly management
Then felt I like some watcher of the skies
When a new planet swims into his ken
— John Keats, “On First Looking Into Chapman’s Homer”
1. In June I wrote about why anomaly management is hard. Well, not only is it hard to do; it’s hard to talk about as well. One reason, I think, is that it’s hard to define what an anomaly is. And that’s a structural problem, not just a semantic one — if something is well enough understood to be easily described, then how much of an anomaly is it after all?
Artificial intelligence is famously hard to define for similar reasons.
“Anomaly management” and similar terms are not yet in the software marketing mainstream, and may never be. But naming aside, the actual subject matter is important.
2. Anomaly analysis is clearly at the heart of several sectors, including:
- IT operations
- Factory and other physical-plant operations
- Security
- Anti-fraud
- Anti-terrorism
Each of those areas features one or both of the frameworks:
- Surprises are likely to be bad.
- Coincidences are likely to be suspicious.
So if you want to identify, understand, avert and/or remediate bad stuff, data anomalies are the first place to look.
3. The “insights” promised by many analytics vendors — especially those who sell to marketing departments — are also often heralded by anomalies. Already in the 1970s, Walmart observed that red clothing sold particularly well in Omaha, while orange flew off the shelves in Syracuse. And so, in large college towns, they stocked their stores to the gills with clothing in the colors of the local football team. They also noticed that fancy dresses for little girls sold especially well in Hispanic communities … specifically for girls at the age of First Communion.
Categories: Business intelligence, Log analysis, Predictive modeling and advanced analytics, Web analytics | 4 Comments |
“Real-time” is getting real
I’ve been an analyst for 35 years, and debates about “real-time” technology have run through my whole career. Some of those debates are by now pretty much settled. In particular:
- Yes, interactive computer response is crucial.
- Into the 1980s, many apps were batch-only. Demand for such apps dried up.
- Business intelligence should occur at interactive speeds, which is a major reason that there’s a market for high-performance analytic RDBMS.
- Theoretical arguments about “true” real-time vs. near-real-time are often pointless.
- What matters in most cases is human users’ perceptions of speed.
- Most of the exceptions to that rule occur when machines race other machines, for example in automated bidding (high frequency trading or otherwise) or in network security.
A big issue that does remain open is: How fresh does data need to be? My preferred summary answer is: As fresh as is needed to support the best decision-making. I think that formulation starts with several advantages:
- It respects the obvious point that different use cases require different levels of data freshness.
- It cautions against people who think they need fresh information but aren’t in a position to use it. (Such users have driven much bogus “real-time” demand in the past.)
- It covers cases of both human and automated decision-making.
Straightforward applications of this principle include: Read more