DBAs of the future
After a July visit to DataStax, I wrote
The idea that NoSQL does away with DBAs (DataBase Administrators) is common. It also turns out to be wrong. DBAs basically do two things.
- Handle the database design part of application development. In NoSQL environments, this part of the job is indeed largely refactored away. More precisely, it is integrated into the general app developer/architect role.
- Manage production databases. This part of the DBA job is, if anything, a bigger deal in the NoSQL world than in more mature and automated relational environments. It’s likely to be called part of “devops” rather than “DBA”, but by whatever name it’s very much a thing.
That turns out to understate the core point, which is that DBAs still matter in non-RDBMS environments. Specifically, it’s too narrow in two ways.
- First, it’s generally too narrow as to what DBAs do; people with DBA-like skills are also involved in other areas such as “data governance”, “information lifecycle management”, storage, or what I like to call data mustering.
- Second — and more narrowly 🙂 — the first bullet point of the quote is actually incorrect. In fact, the database design part of application development can be done by a specialized person up front in the NoSQL world, just as it commonly is for RDBMS apps.
My wake-up call for that latter bit was a recent MongoDB 3.4 briefing. MongoDB certainly has various efforts in administrative tools, which I won’t recapitulate here. But to my surprise, MongoDB also found a role for something resembling relational database design. The idea is simple: A database administrator defines a view against a MongoDB database, where views: Read more
Categories: Databricks, Spark and BDAS, Hadoop, MongoDB, NoSQL, Streaming and complex event processing (CEP) | Leave a Comment |
MongoDB 3.4 and “multimodel” query
“Multimodel” database management is a hot new concept these days, notwithstanding that it’s been around since at least the 1990s. My clients at MongoDB of course had to join the train as well, but they’ve taken a clear and interesting stance:
- A query layer with multiple ways to query and analyze data.
- A separate data storage layer in which you have a choice of data storage engines …
- … each of which has the same logical (JSON-based) data structure.
When I pointed out that it would make sense to call this “multimodel query” — because the storage isn’t “multimodel” at all — they quickly agreed.
To be clear: While there are multiple ways to read data in MongoDB, there’s still only one way to write it. Letting that sink in helps clear up confusion as to what about MongoDB is or isn’t “multimodel”. To spell that out a bit further: Read more
Categories: Database diversity, Emulation, transparency, portability, MongoDB, MySQL, NoSQL, Open source, RDF and graphs, Structured documents, Text | 4 Comments |
Rapid analytics
“Real-time” technology excites people, and has for decades. Yet the actual, useful technology to meet “real-time” requirements remains immature, especially in cases which call for rapid human decision-making. Here are some notes on that conundrum.
1. I recently posted that “real-time” is getting real. But there are multiple technology challenges involved, including:
- General streaming. Some of my posts on that subject are linked at the bottom of my August post on Flink.
- Low-latency ingest of data into structures from which it can be immediately analyzed. That helps drive the (re)integration of operational data stores, analytic data stores, and other analytic support — e.g. via Spark.
- Business intelligence that can be used quickly enough. This is a major ongoing challenge. My clients at Zoomdata may be thinking about this area more clearly than most, but even they are still in the early stages of providing what users need.
- Advanced analytics that can be done quickly enough. Answers there may come through developments in anomaly management, but that area is still in its super-early days.
- Alerting, which has been under-addressed for decades. Perhaps the anomaly management vendors will finally solve it.
2. In early 2011, I coined the phrase investigative analytics, about which I said three main things: Read more
Notes on anomaly management
Then felt I like some watcher of the skies
When a new planet swims into his ken
— John Keats, “On First Looking Into Chapman’s Homer”
1. In June I wrote about why anomaly management is hard. Well, not only is it hard to do; it’s hard to talk about as well. One reason, I think, is that it’s hard to define what an anomaly is. And that’s a structural problem, not just a semantic one — if something is well enough understood to be easily described, then how much of an anomaly is it after all?
Artificial intelligence is famously hard to define for similar reasons.
“Anomaly management” and similar terms are not yet in the software marketing mainstream, and may never be. But naming aside, the actual subject matter is important.
2. Anomaly analysis is clearly at the heart of several sectors, including:
- IT operations
- Factory and other physical-plant operations
- Security
- Anti-fraud
- Anti-terrorism
Each of those areas features one or both of the frameworks:
- Surprises are likely to be bad.
- Coincidences are likely to be suspicious.
So if you want to identify, understand, avert and/or remediate bad stuff, data anomalies are the first place to look.
3. The “insights” promised by many analytics vendors — especially those who sell to marketing departments — are also often heralded by anomalies. Already in the 1970s, Walmart observed that red clothing sold particularly well in Omaha, while orange flew off the shelves in Syracuse. And so, in large college towns, they stocked their stores to the gills with clothing in the colors of the local football team. They also noticed that fancy dresses for little girls sold especially well in Hispanic communities … specifically for girls at the age of First Communion.
Categories: Business intelligence, Log analysis, Predictive modeling and advanced analytics, Web analytics | 4 Comments |
Notes on the transition to the cloud
1. The cloud is super-hot. Duh. And so, like any hot buzzword, “cloud” means different things to different marketers. Four of the biggest things that have been called “cloud” are:
- The Amazon cloud, Microsoft Azure, and their competitors, aka public cloud.
- Software as a service, aka SaaS.
- Co-location in off-premises data centers, aka colo.
- On-premises clusters (truly on-prem or colo as the case may be) designed to run a broad variety of applications, aka private cloud.
Further, there’s always the idea of hybrid cloud, in which a vendor peddles private cloud systems (usually appliances) running similar technology stacks to what they run in their proprietary public clouds. A number of vendors have backed away from such stories, but a few are still pushing it, including Oracle and Microsoft.
This is a good example of Monash’s Laws of Commercial Semantics.
2. Due to economies of scale, only a few companies should operate their own data centers, aka true on-prem(ises). The rest should use some combination of colo, SaaS, and public cloud.
This fact now seems to be widely understood.
“Real-time” is getting real
I’ve been an analyst for 35 years, and debates about “real-time” technology have run through my whole career. Some of those debates are by now pretty much settled. In particular:
- Yes, interactive computer response is crucial.
- Into the 1980s, many apps were batch-only. Demand for such apps dried up.
- Business intelligence should occur at interactive speeds, which is a major reason that there’s a market for high-performance analytic RDBMS.
- Theoretical arguments about “true” real-time vs. near-real-time are often pointless.
- What matters in most cases is human users’ perceptions of speed.
- Most of the exceptions to that rule occur when machines race other machines, for example in automated bidding (high frequency trading or otherwise) or in network security.
A big issue that does remain open is: How fresh does data need to be? My preferred summary answer is: As fresh as is needed to support the best decision-making. I think that formulation starts with several advantages:
- It respects the obvious point that different use cases require different levels of data freshness.
- It cautions against people who think they need fresh information but aren’t in a position to use it. (Such users have driven much bogus “real-time” demand in the past.)
- It covers cases of both human and automated decision-making.
Straightforward applications of this principle include: Read more
Are analytic RDBMS and data warehouse appliances obsolete?
I used to spend most of my time — blogging and consulting alike — on data warehouse appliances and analytic DBMS. Now I’m barely involved with them. The most obvious reason is that there have been drastic changes in industry structure:
- Many of the independent vendors were swooped up by acquisition.
- None of those acquisitions was a big success.
- Microsoft did little with DATAllegro.
- Netezza struggled with R&D after being bought by IBM. An IBMer recently told me that their main analytic RDBMS engine was BLU.
- I hear about Vertica more as a technology to be replaced than as a significant ongoing market player.
- Pivotal open-sourced Greenplum. I have detected few people who care.
- Ditto for Actian’s offerings.
- Teradata claimed a few large Aster accounts, but I never hear of Aster as something to compete or partner with.
- Smaller vendors fizzled too. Hadapt and Kickfire went to Teradata as more-or-less acquihires. InfiniDB folded. Etc.
- Impala and other Hadoop-based alternatives are technology options.
- Oracle, Microsoft, IBM and to some extent SAP/Sybase are still pedaling along … but I rarely talk with companies that big. 🙂
Simply reciting all that, however, begs the question of whether one should still care about analytic RDBMS at all.
My answer, in a nutshell, is:
Analytic RDBMS — whether on premises in software, in the form of data warehouse appliances, or in the cloud — are still great for hard-core business intelligence, where “hard-core” can refer to ad-hoc query complexity, reporting/dashboard concurrency, or both. But they aren’t good for much else.
Introduction to data Artisans and Flink
data Artisans and Flink basics start:
- Flink is an Apache project sponsored by the Berlin-based company data Artisans.
- Flink has been viewed in a few different ways, all of which are similar to how Spark is seen. In particular, per co-founder Kostas Tzoumas:
- Flink’s original goal was “Hadoop done right”.
- Now Flink is focused on streaming analytics, as an alternative to Spark Streaming, Samza, et al.
- Kostas seems to see Flink as a batch-plus-streaming engine that’s streaming-first.
Like many open source projects, Flink seems to have been partly inspired by a Google paper.
To this point, data Artisans and Flink have less maturity and traction than Databricks and Spark. For example: Read more
More about Databricks and Spark
Databricks CEO Ali Ghodsi checked in because he disagreed with part of my recent post about Databricks. Ali’s take on Databricks’ position in the Spark world includes:
- What I called Databricks’ “secondary business” of “licensing stuff to Spark distributors” was really about second/third tier support. Fair enough. But distributors of stacks including Spark, for whatever combination of on-premise and cloud as the case may be, may in many cases be viewed as competitors to Databricks cloud-only service. So why should Databricks help them?
- Databricks’ investment in Spark Summit and similar evangelism is larger than I realized.
- Ali suggests that the fraction of Databricks’ engineering devoted to open source Spark is greater than I understood during my recent visit.
Ali also walked me through customer use cases and adoption in wonderful detail. In general:
- A large majority of Databricks customers have machine learning use cases.
- Predicting and preventing user/customer churn is a huge issue across multiple market sectors.
The story on those sectors, per Ali, is: Read more
Notes on DataStax and Cassandra
I visited DataStax on my recent trip. That was a tipping point leading to my recent discussions of NoSQL DBAs and misplaced fear of vendor lock-in. But of course I also learned some things about DataStax and Cassandra themselves.
On the customer side:
- DataStax customers still overwhelmingly use Cassandra for internet back-ends — web, mobile or otherwise as the case might be.
- This includes — and “includes” might be understating the point — traditional enterprises worried about competition from internet-only ventures.
Customers in large numbers want cloud capabilities, as a potential future if not a current need.
One customer example was a large retailer, who in the past was awful at providing accurate inventory information online, but now uses Cassandra for that. DataStax brags that its queries come back in 20 milliseconds, but that strikes me as a bit beside the point; what really matters is that data accuracy has gone from “batch” to some version of real-time. Also, Microsoft is a DataStax customer, using Cassandra (and Spark) for the Office 365 backend, or at least for the associated analytics.
Per Patrick McFadin, the four biggest things in DataStax Enterprise 5 are: Read more
Categories: Cassandra, DataStax, Microsoft and SQL*Server, NoSQL, Specific users | 2 Comments |