November 23, 2016

DBAs of the future

After a July visit to DataStax, I wrote

The idea that NoSQL does away with DBAs (DataBase Administrators) is common. It also turns out to be wrong. DBAs basically do two things.

  • Handle the database design part of application development. In NoSQL environments, this part of the job is indeed largely refactored away. More precisely, it is integrated into the general app developer/architect role.
  • Manage production databases. This part of the DBA job is, if anything, a bigger deal in the NoSQL world than in more mature and automated relational environments. It’s likely to be called part of “devops” rather than “DBA”, but by whatever name it’s very much a thing.

That turns out to understate the core point, which is that DBAs still matter in non-RDBMS environments. Specifically, it’s too narrow in two ways.

My wake-up call for that latter bit was a recent MongoDB 3.4 briefing. MongoDB certainly has various efforts in administrative tools, which I won’t recapitulate here. But to my surprise, MongoDB also found a role for something resembling relational database design. The idea is simple: A database administrator defines a view against a MongoDB database, where views: Read more

November 23, 2016

MongoDB 3.4 and “multimodel” query

“Multimodel” database management is a hot new concept these days, notwithstanding that it’s been around since at least the 1990s. My clients at MongoDB of course had to join the train as well, but they’ve taken a clear and interesting stance:

When I pointed out that it would make sense to call this “multimodel query” — because the storage isn’t “multimodel” at all — they quickly agreed.

To be clear: While there are multiple ways to read data in MongoDB, there’s still only one way to write it. Letting that sink in helps clear up confusion as to what about MongoDB is or isn’t “multimodel”. To spell that out a bit further: Read more

October 21, 2016

Rapid analytics

“Real-time” technology excites people, and has for decades. Yet the actual, useful technology to meet “real-time” requirements remains immature, especially in cases which call for rapid human decision-making. Here are some notes on that conundrum.

1. I recently posted that “real-time” is getting real. But there are multiple technology challenges involved, including:

2. In early 2011, I coined the phrase investigative analytics, about which I said three main things: Read more

October 10, 2016

Notes on anomaly management

Then felt I like some watcher of the skies
When a new planet swims into his ken

— John Keats, “On First Looking Into Chapman’s Homer”

1. In June I wrote about why anomaly management is hard. Well, not only is it hard to do; it’s hard to talk about as well. One reason, I think, is that it’s hard to define what an anomaly is. And that’s a structural problem, not just a semantic one — if something is well enough understood to be easily described, then how much of an anomaly is it after all?

Artificial intelligence is famously hard to define for similar reasons.

“Anomaly management” and similar terms are not yet in the software marketing mainstream, and may never be. But naming aside, the actual subject matter is important.

2. Anomaly analysis is clearly at the heart of several sectors, including:

Each of those areas features one or both of the frameworks:

So if you want to identify, understand, avert and/or remediate bad stuff, data anomalies are the first place to look.

3. The “insights” promised by many analytics vendors — especially those who sell to marketing departments — are also often heralded by anomalies. Already in the 1970s, Walmart observed that red clothing sold particularly well in Omaha, while orange flew off the shelves in Syracuse. And so, in large college towns, they stocked their stores to the gills with clothing in the colors of the local football team. They also noticed that fancy dresses for little girls sold especially well in Hispanic communities … specifically for girls at the age of First Communion.

Read more

October 3, 2016

Notes on the transition to the cloud

1. The cloud is super-hot. Duh. And so, like any hot buzzword, “cloud” means different things to different marketers. Four of the biggest things that have been called “cloud” are:

Further, there’s always the idea of hybrid cloud, in which a vendor peddles private cloud systems (usually appliances) running similar technology stacks to what they run in their proprietary public clouds. A number of vendors have backed away from such stories, but a few are still pushing it, including Oracle and Microsoft.

This is a good example of Monash’s Laws of Commercial Semantics.

2. Due to economies of scale, only a few companies should operate their own data centers, aka true on-prem(ises). The rest should use some combination of colo, SaaS, and public cloud.

This fact now seems to be widely understood.

Read more

September 6, 2016

“Real-time” is getting real

I’ve been an analyst for 35 years, and debates about “real-time” technology have run through my whole career. Some of those debates are by now pretty much settled. In particular:

A big issue that does remain open is: How fresh does data need to be? My preferred summary answer is: As fresh as is needed to support the best decision-making. I think that formulation starts with several advantages:

Straightforward applications of this principle include: Read more

August 28, 2016

Are analytic RDBMS and data warehouse appliances obsolete?

I used to spend most of my time — blogging and consulting alike — on data warehouse appliances and analytic DBMS. Now I’m barely involved with them. The most obvious reason is that there have been drastic changes in industry structure:

Simply reciting all that, however, begs the question of whether one should still care about analytic RDBMS at all.

My answer, in a nutshell, is:

Analytic RDBMS — whether on premises in software, in the form of data warehouse appliances, or in the cloud — are still great for hard-core business intelligence, where “hard-core” can refer to ad-hoc query complexity, reporting/dashboard concurrency, or both. But they aren’t good for much else.

Read more

August 21, 2016

Introduction to data Artisans and Flink

data Artisans and Flink basics start:

Like many open source projects, Flink seems to have been partly inspired by a Google paper.

To this point, data Artisans and Flink have less maturity and traction than Databricks and Spark. For example:  Read more

August 21, 2016

More about Databricks and Spark

Databricks CEO Ali Ghodsi checked in because he disagreed with part of my recent post about Databricks. Ali’s take on Databricks’ position in the Spark world includes:

Ali also walked me through customer use cases and adoption in wonderful detail. In general:

The story on those sectors, per Ali, is:  Read more

August 7, 2016

Notes on DataStax and Cassandra

I visited DataStax on my recent trip. That was a tipping point leading to my recent discussions of NoSQL DBAs and misplaced fear of vendor lock-in. But of course I also learned some things about DataStax and Cassandra themselves.

On the customer side:

Customers in large numbers want cloud capabilities, as a potential future if not a current need.

One customer example was a large retailer, who in the past was awful at providing accurate inventory information online, but now uses Cassandra for that. DataStax brags that its queries come back in 20 milliseconds, but that strikes me as a bit beside the point; what really matters is that data accuracy has gone from “batch” to some version of real-time. Also, Microsoft is a DataStax customer, using Cassandra (and Spark) for the Office 365 backend, or at least for the associated analytics.

Per Patrick McFadin, the four biggest things in DataStax Enterprise 5 are: Read more

← Previous PageNext Page →

Feed: DBMS (database management system), DW (data warehousing), BI (business intelligence), and analytics technology Subscribe to the Monash Research feed via RSS or email:

Login

Search our blogs and white papers

Monash Research blogs

User consulting

Building a short list? Refining your strategic plan? We can help.

Vendor advisory

We tell vendors what's happening -- and, more important, what they should do about it.

Monash Research highlights

Learn about white papers, webcasts, and blog highlights, by RSS or email.