Yahoo
Discussion of Yahoo’s use of database and analytic technology. Related subjects include:
- The use of analytic technologies to study web and network event data
- (in Text Technologies) Analysis of Yahoo’s efforts as a provider of search and other online services
More notes on HBase
1. Continuing from last week’s HBase post, the Cloudera folks were fairly proud of HBase’s features for performance and scalability. Indeed, they suggested that use cases which were a good technical match for HBase were those that required fast random reads and writes with high concurrency and strict consistency. Some of the HBase architecture for query performance seems to be:
- Everything is stored in sorted files. (I didn’t probe as to what exactly the files were sorted on.)
- Files have indexes and optional Bloom filters.
- Files are marked with min/max field values and time stamp ranges, which helps with data skipping.
Notwithstanding that a couple of those features sound like they might help with analytic queries, the base expectation is that you’ll periodically massage your HBase data into a more analytically-oriented form. For example — I was talking with Cloudera after all — you could put it into Parquet.
2. The discussion of which kinds of data are originally put into HBase was a bit confusing.
- HBase is commonly used to receive machine-generated data. Everybody knows that.
- Cloudera drew a distinction between:
- Straightforward time series, which should probably just go into HDFS (Hadoop Distributed File System) rather than HBase.
- Data that is bucketed by entity, which likely should go into HBase. Examples of entities are specific users or devices.
- Cloudera also reminded me that OpenTSDB, a popular time series data store, runs over HBase.
OpenTSDB, by the way, likes to store detailed data and aggregates side-by-side, which resembles a pattern I discussed in my recent BI for NoSQL post.
3. HBase supports caching, tiered storage, and so on. Cloudera is pretty sure that it is publicly known (I presume from blog posts or conference talks) that: Read more
Categories: Cloudera, eBay, Facebook, Hadoop, HBase, Market share and customer counts, NoSQL, Open source, Petabyte-scale data management, Specific users, Yahoo | 4 Comments |
Notes on the Hortonworks IPO S-1 filing
Given my stock research experience, perhaps I should post about Hortonworks’ initial public offering S-1 filing. 🙂 For starters, let me say:
- Hortonworks’ subscription revenues for the 9 months ended last September 30 appear to be:
- $11.7 million from everybody but Microsoft, …
- … plus $7.5 million from Microsoft, …
- … for a total of $19.2 million.
- Hortonworks states subscription customer counts (as per Page 55 this includes multiple “customers” within the same organization) of:
- 2 on April 30, 2012.
- 9 on December 31, 2012.
- 25 on April 30, 2013.
- 54 on September 30, 2013.
- 95 on December 31, 2013.
- 233 on September 30, 2014.
- Per Page 70, Hortonworks’ total September 30, 2014 customer count was 292, including professional services customers.
- Non-Microsoft subscription revenue in the quarter ended September 30, 2014 seems to have been $5.6 million, or $22.5 million annualized. This suggests Hortonworks’ average subscription revenue per non-Microsoft customer is a little over $100K/year.
- This IPO looks to be a sharply “down round” vs. Hortonworks’ Series D financing earlier this year.
- In March and June, 2014, Hortonworks sold stock that subsequently was converted into 1/2 a Hortonworks share each at $12.1871 per share.
- The tentative top of the offering’s price range is $14/share.
- That’s also slightly down from the Series C price in mid-2013.
And, perhaps of interest only to me — there are approximately 50 references to YARN in the Hortonworks S-1, but only 1 mention of Tez.
Categories: Hadoop, Hortonworks, HP and Neoview, Market share and customer counts, Microsoft and SQL*Server, Pricing, Teradata, Yahoo | 8 Comments |
Spark on fire
Spark is on the rise, to an even greater degree than I thought last month.
- Numerous clients and other companies I talk with have adopted Spark, plan to adopt Spark, or at least think it’s likely they will. In particular:
- A number of analytic-stack companies are joining ClearStory in using Spark. Most of the specifics are confidential, but I hope some will be announced soon.
- MapR has joined Cloudera in supporting Spark, and indeed — unlike Cloudera — is supporting the full Spark stack.
- Mike Olson of Cloudera is on record as predicting that Spark will be the replacement for Hadoop MapReduce. Just about everybody seems to agree, except perhaps for Hortonworks folks betting on the more limited and less mature Tez. Spark’s biggest technical advantages as a general data processing engine are probably:
- The Directed Acyclic Graph processing model. (Any serious MapReduce-replacement contender will probably echo that aspect.)
- A rich set of programming primitives in connection with that model.
- Support also for highly-iterative processing, of the kind found in machine learning.
- Flexible in-memory data structures, namely the RDDs (Resilient Distributed Datasets).
- A clever approach to fault-tolerance.
- Spark is a major contender in streaming.
- There’s some cool machine-learning innovation using Spark.
- Spark 1.0 will drop by mid-May, Apache voters willin’ an’ the creek don’ rise. Publicity will likely ensue, with strong evidence of industry support.*
*Yes, my fingerprints are showing again.
The most official description of what Spark now contains is probably the “Spark ecosystem” diagram from Databricks. However, at the time of this writing it is slightly out of date, as per some email from Databricks CEO Ion Stoica (quoted with permission):
… but if I were to redraw it, SparkSQL will replace Shark, and Shark will eventually become a thin layer above SparkSQL and below BlinkDB.
With this change, all the modules on top of Spark (i.e., SparkStreaming, SparkSQL, GraphX, and MLlib) are part of the Spark distribution. You can think of these modules as libraries that come with Spark.
Hortonworks business notes
Hortonworks did a business-oriented round of outreach, talking with at least Derrick Harris and me. Notes from my call — for which Rob Bearden didn’t bother showing up — include, in no particular order:
- Hortonworks denies advanced acquisition discussions with either Microsoft and Intel. Of course, that doesn’t exactly contradict the widespread story of Intel having made an acquisition offer. Edit: I have subsequently heard, very credibly, that the denial was untrue.
- As vendors usually do, Hortonworks denies the extreme forms of Cloudera’s suggestion that Hortonworks competitive wins relate to price slashing. But Hortonworks does believe that its license fees often wind up being lower than Cloudera’s, due especially to Hortonworks offering few extra-charge items than Cloudera.
- Hortonworks used a figure of ~75 subscription customers. Edit: That figure turns out in retrospect to have been inflated. This does not include OEM sales through, for example, Teradata, Microsoft Azure, or Rackspace. However, that does include …
- … a small number of installations hosted in the cloud — e.g. ~2 on Amazon Web Services — or otherwise remotely. Also, testing in the cloud seems to be fairly frequent, and the cloud can also be a source of data ingested into Hadoop.
- Since Hortonworks a couple of times made it seem that Rackspace was an important partner, behind only Teradata and Microsoft, I finally asked why. Answers boiled down to a Rackspace Hadoop-as-a-service offering, plus joint work to improve Hadoop-on-OpenStack.
- Other Hortonworks reseller partners seem more important in terms of helping customers consume HDP (Hortonworks Data Platform), rather than for actually doing Hortonworks’ selling for it. (This is unsurprising — channel sales rarely are a path to success for a product that is also appropriately sold by a direct force.)
- Hortonworks listed its major industry sectors as:
- Web and retailing, which it identifies as one thing.
- Media.
- Telecommunications.
- Health care (various subsectors).
- Financial services, which it called “competitive” in the kind of tone that usually signifies “we lose a lot more than we win, and would love to change that”.
In Hortonworks’ view, Hadoop adopters typically start with a specific use case around a new type of data, such as clickstream, sensor, server log, geolocation, or social. Read more
Hortonworks, Hadoop, Stinger and Hive
I chatted yesterday with the Hortonworks gang. The main subject was Hortonworks’ approach to SQL-on-Hadoop — commonly called Stinger — but at my request we cycled through a bunch of other topics as well. Company-specific notes include:
- Hortonworks founder J. Eric “Eric14” Baldeschwieler is no longer at Hortonworks, although I imagine he stays closely in touch. What he’s doing next is unspecified, except by the general phrase “his own thing”. (Derrick Harris has more on Eric’s departure.)
- John Kreisa still is at Hortonworks, just not as marketing VP. Think instead of partnerships and projects.
- ~250 employees.
- ~70-75 subscription customers.
Our deployment and use case discussions were a little confused, because a key part of Hortonworks’ strategy is to support and encourage the idea of combining use cases and workloads on a single cluster. But I did hear:
- 10ish nodes for a typical starting cluster.
- 100ish nodes for a typical “data lake” committed adoption.
- Teradata UDA (Unified Data Architecture)* customers sometimes (typically?) jumping straight to a data lake scenario.
- A few users in the 10s of 1000s of nodes. (Obviously Yahoo is one.)
- HBase used in >50% of installations.
- Hive probably even more than that.
- Hortonworks is seeing a fair amount of interest in Windows Hadoop deployments.
*By the way — Teradata seems serious about pushing the UDA as a core message.
Ecosystem notes, in Hortonworks’ perception, included:
- Cloudera is obviously Hortonworks’ biggest distro competitor. Next is IBM, presumably in its blue-forever installed base. MapR is barely on the radar screen; Pivotal’s likely rise hasn’t yet hit sales reports.
- Hortonworks evidently sees a lot of MicroStrategy and Tableau, and some Platfora and Datameer, the latter two at around the same level of interest.
- Accumulo is a big deal in the Federal government, and has gotten a few health care wins as well. Its success is all about security. (Note: That’s all consistent with what I hear elsewhere.)
I also asked specifically about OpenStack. Hortonworks is a member of the OpenStack project, contributes nontrivially to Swift and other subprojects, and sees Rackspace as an important partner. But despite all that, I think strong Hadoop/OpenStack integration is something for the indefinite future.
Hortonworks’ views about Hadoop 2.0 start from the premise that its goal is to support running a multitude of workloads on a single cluster. (See, for example, what I previously posted about Tez and YARN.) Timing notes for Hadoop 2.0 include:
- It’s been in preview/release candidate/commercial beta mode for weeks.
- Q3 is the goal; H2 is the emphatic goal.
- Yahoo’s been in production with YARN >8 months, and has no MapReduce 1 clusters left. (Yahoo has >35,000 Hadoop nodes.)
- The last months of delays have been mainly about sprucing up various APIs and protocols, which may need to serve for a similar multi-year period as Hadoop 1’s have. But there also was some YARN stabilization into May.
Frankly, I think Cloudera’s earlier and necessarily incremental Hadoop 2 rollout was a better choice than Hortonworks’ later big bang, even though the core-mission aspect of Hadoop 2.0 is what was least ready. HDFS (Hadoop Distributed File System) performance, NameNode failover and so on were well worth having, and it’s more than a year between Cloudera starting supporting them and when Hortonworks is offering Hadoop 2.0.
Hortonworks’ approach to doing SQL-on-Hadoop can be summarized simply as “Make Hive into as good an analytic RDBMS as possible, all in open source”. Key elements include: Read more
Hadoop execution enhancements
Hadoop 2.0/YARN is the first big step in evolving Hadoop beyond a strict Map/Reduce paradigm, in that it at least allows for the possibility of non- or beyond-MapReduce processing engines. While YARN didn’t meet its target of general availability around year-end 2012, Arun Murthy of Hortonworks told me recently that:
- Yahoo is a big YARN user.
- There are other — paying — YARN users.
- YARN general availability is now targeted for well before the end of 2013.
Arun further told me about Tez, the next-generation Hadoop processing engine he’s working on, which he also discussed in a recent blog post:
With the emergence of Apache Hadoop YARN as the basis of next generation data-processing architectures, there is a strong need for an application which can execute a complex DAG [Directed Acyclic Graph] of tasks which can then be shared by Apache Pig, Apache Hive, Cascading and others. The constrained DAG expressible in MapReduce (one set of maps followed by one set of reduces) often results in multiple MapReduce jobs which harm latency for short queries (overhead of launching multiple jobs) and throughput for large-scale queries (too much overhead for materializing intermediate job outputs to the filesystem). With Tez, we introduce a more expressive DAG of tasks, within a single application or job, that is better aligned with the required processing task – thus, for e.g., any given SQL query can be expressed as a single job using Tez.
This is similar to the approach of BDAS Spark:
Rather than being restricted to Maps and Reduces, Spark has more numerous primitive operations, including map, reduce, sample, join, and group-by. You can do these more or less in any order.
although Tez won’t match Spark’s richer list of primitive operations.
More specifically, there will be six primitive Tez operations:
- HDFS (Hadoop Distributed File System) input and output.
- Sorting on input and output (I’m not sure why that’s two operations rather than one).
- Shuffling of input and output (ditto).
A Map step would compound HDFS input, output sorting, and output shuffling; a Reduce step compounds — you guessed it! — input sorting, input shuffling, and HDFS output.
I can’t think of much in the way of algorithms that would be logically impossible in MapReduce yet possible in Tez. Rather, the main point of Tez seems to be performance, performance consistency, response-time consistency, and all that good stuff. Specific advantages that Arun and I talked about included:
- The requirement for materializing (onto disk) intermediate results that you don’t want to is gone. (Yay!)
- Hadoop jobs will step on each other’s toes less. Instead of Maps and Reduces from unrelated jobs getting interleaved, all the operations from a single job will by default be executed in one chunk. (Even so, I see no reason to expect early releases of Tez to do a great job on highly concurrent mixed workload management.)
- Added granularity brings opportunities for additional performance enhancements, for example in the area of sorting. (Arun loves sorts.)
Categories: Databricks, Spark and BDAS, Hadoop, Hortonworks, MapReduce, Workload management, Yahoo | 14 Comments |
YCSB benchmark notes
Two different vendors recently tried to inflict benchmarks on me. Both were YCSBs, so I decided to look up what the YCSB (Yahoo! Cloud Serving Benchmark) actually is. It turns out that the YCSB:
- Was developed by — you guessed it! — Yahoo.
- Is meant to simulate workloads that fetch web pages, including the writing portions of those workloads.
- Was developed with NoSQL data managers in mind.
- Bakes in one kind of sensitivity analysis — latency vs. throughput.
- Is implemented in extensible open source code.
That actually sounds pretty good, especially the extensibility part;* it’s likely that the YCSB can be useful in a variety of product selection scenarios. Still, as recent examples show, benchmark marketing is an annoying blight upon the database industry.
*With extensibility you can test your own workloads and do your own sensitivity analyses.
A YCSB overview page features links both to the code and to the original explanatory paper. The clearest explanation of the YCSB I found there was: Read more
Categories: Aerospike, Benchmarks and POCs, NewSQL, NoSQL, NuoDB, OLTP, Yahoo | 19 Comments |
Notes on Microsoft SQL Server
I’ve been known to gripe that covering big companies such as Microsoft is hard. Still, Doug Leland of Microsoft’s SQL Server team checked in for phone calls in August and again today, and I think I got enough to be worth writing about, albeit at a survey level only,
Subjects I’ll mention include:
- Hadoop
- Parallel Data Warehouse
- PolyBase
- Columnar data management
- In-memory data management (Hekaton)
One topic I can’t yet comment about is MOLAP/ROLAP, which is a pity; if anybody can refute my claim that ROLAP trumps MOLAP, it’s either Microsoft or Oracle.
Microsoft’s slides mentioned Yahoo refining a 6 petabyte Hadoop cluster into a 24 terabyte SQL Server “cube”, which was surprising in light of Yahoo’s history as an Oracle reference.
Hadoop YARN — beyond MapReduce
A lot of confusion seems to have built around the facts:
- Hadoop MapReduce is being opened up into something called MapReduce 2 (MRv2).
- Something called YARN (Yet Another Resource Negotiator) is involved.
- One purpose of the whole thing is to make MapReduce not be required for Hadoop.
- MPI (Message Passing Interface) was mentioned as a paradigmatic example of a MapReduce alternative, yet the MPI/YARN/Hadoop effort is somehow troubled.
- Cloudera shipped YARN in June, yet simultaneously warned people away from actually using it.
Here’s my best effort to make sense of all that, helped by a number of conversations with various Hadoop companies, but most importantly a chat Friday with Arun Murthy and other Hortonworks folks.
- YARN, as an aspect of Hadoop, has two major kinds of benefits:
- The ability to use programming frameworks other than MapReduce.
- Scalability, no matter what programming framework you use.
- The YARN availability story goes:
- YARN is in alpha.
- YARN is expected to be in production at year-end, give or take.
- Cloudera made the marketing decision to include YARN in its June Hadoop distribution release anyway, but advised that it was for experimentation rather than production.
- Hortonworks, in its own June release, only shipped code it advised putting into production.
- My take on the YARN/MPI story goes something like this:
- Numerous people have told me of YARN/MPI delays.
- One person suggested that Greenplum is taking the lead in YARN/MPI integration, but has gotten slow and reclusive, apparently due to some big company-itis.
- I find that credible because of the Greenplum/SAS/MPI connection.
- If I understood Arun correctly, the latency story on Hadoop MapReduce is approximately:
- Arun says that Hadoop’s reputation for taking 10s of seconds to start a Hadoop job is old news. It takes a low single-digit number of seconds.
- However, starting all that Java does take 100s of milliseconds at best — 200 milliseconds in an ideal case, 500 milliseconds more realistically, and that’s just on a single server.
- Thus, if you want human real-time interaction, Hadoop MapReduce is not and likely never will be the way to go. Getting Hadoop MapReduce latencies under a few seconds is likely to be more trouble than it’s worth — because of MapReduce, not because of Hadoop.
- In particular — instead of incurring the overhead of starting processes up, Arun thinks low-latency needs should be met in a different way, namely by serving them from already-running processes. The examples he kept mentioning were the event processing projects Storm (out of Twitter, via an acquisition) and S4 (out of Yahoo).
Categories: Cloudera, Hadoop, Hortonworks, MapReduce, Workload management, Yahoo | 7 Comments |
Big data terminology and positioning
Recently, I observed that Big Data terminology is seriously broken. It is reasonable to reduce the subject to two quasi-dimensions:
- Bigness — Volume, Velocity, size
- Structure — Variety, Variability, Complexity
given that
- High-velocity “big data” problems are usually high-volume as well.*
- Variety, variability, and complexity all relate to the simply-structured/poly-structured distinction.
But the conflation should stop there.
*Low-volume/high-velocity problems are commonly referred to as “event processing” and/or “streaming”.
When people claim that bigness and structure are the same issue, they oversimplify into mush. So I think we need four pieces of terminology, reflective of a 2×2 matrix of possibilities. For want of better alternatives, my suggestions are:
- Relational big data is data of high volume that fits well into a relational DBMS.
- Multi-structured big data is data of high volume that doesn’t fit well into a relational DBMS. Alternative: Poly-structured big data.
- Conventional relational data is data of not-so-high volume that fits well into a relational DBMS. Alternatives: Ordinary/normal/smaller relational data.
- Smaller poly-structured data is data for which dynamic schema capabilities are important, but which doesn’t rise to “big data” volume.