Links and observations
I’m back from a trip to the SF Bay area, with a lot of writing ahead of me. I’ll dive in with some quick comments here, then write at greater length about some of these points when I can. From my trip: Read more
Categories: Analytic technologies, Aster Data, Calpont, Cassandra, Couchbase, Data warehouse appliances, Data warehousing, EMC, Exadata, Facebook, Greenplum, HP and Neoview, Kickfire, NoSQL, OLTP, ParAccel, Sybase, XtremeData | 1 Comment |
Nested data structures keep coming up, especially for log files
Nested data structures have come up several times now, almost always in the context of log files.
- Google has published about a project called Dremel. Per Tasso Agyros, one of Dremel’s key concepts is nested data structures.
- Those arrays that the XLDB/SciDB folks keep talking about are meant to be nested data structures. Scientific data is of course log-oriented. eBay was very interested in that project too.
- Facebook’s log files have a big nested data structure flavor.
I don’t have a grasp yet on what exactly is happening here, but it’s something.
Categories: eBay, Facebook, Google, Log analysis, Scientific research, Theory and architecture | 7 Comments |
dbShards — a lot like an MPP OLTP DBMS based on MySQL or PostgreSQL
I talked yesterday w/ Cory Isaacson, who runs CodeFutures, makers of dbShards. dbShards is a software layer that turns an ordinary DBMS (currently MySQL or PostgreSQL) into an MPP shared-nothing ACID-compliant OLTP DBMS. Technical highlights included: Read more
Categories: dbShards and CodeFutures, Facebook, MySQL, OLTP, Parallelization, PostgreSQL | 3 Comments |
Sybase SQL Anywhere
After Powersoft acquired Watcom and its famed Fortran compiler, marketing VP Tom Herring told me that the hidden jewel of the acquisition might well be a little DBMS, Watcom SQL. To put it mildly, Tom was right. Watcom SQL became SQL Anywhere; Powersoft was acquired by Sybase; Powersoft’s and Sybase’s main products both fell on hard times; Sybase built a whole mobile technology division around SQL Anywhere; and the whole thing just got sold for billions of dollars to SAP. Chris Kleisath recently briefed me on SQL Anywhere Version 12 (released to manufacturing this month), which seemed like a fine opportunity to catch up on prior developments as well.
The first two things to understand about SQL Anywhere is that there actually are three products:
- Sybase SQL Anywhere, a mid-range relational DBMS.
- Sybase UltraLite, a DBMS for mobile devices.
- Sybase MobiLink, a replication/sync tool.
and also that there are three main deployment/use cases:
- Generic desktop or server computers. This was the original market for SQL Anywhere.
- Laptop/handheld computers. This was the original growth market for SQL Anywhere. In particular, Siebel Systems’ first growth spurt was selling sales force automation software on laptop computers with SQL Anywhere underneath.
- Specialized devices. Earlier this decade, Sybase thought SQL Anywhere’s big growth market was on specialized devices. (I recall a video featuring some kind of automated pill dispensing machine for hospitals.)
Categories: Mid-range, Progress, Apama, and DataDirect, Specific users, Sybase | Leave a Comment |
Riptano, and Cassandra adoption
Tonight’s Cassandra technology post got plenty long enough on its own, so I’m separating out business and adoption issues here. For starters, known Cassandra users include:
- Facebook, which has said it has 150 or so Cassandra nodes (but see below)
- Twitter, which has said it has 45 or so Cassandra nodes
- Rackspace, which used to be Jonathan Ellis’ employer, and now is backing Cassandra company Riptano
- Digg, which along with Twitter and Rackspace was one of the three major users helping advance the Cassandra project
- OpenX, Simple Geo, Digital Reasoning, who Jonathan cited as production users in March
- Cloudkick, as noted and linked in my other post
- Two customers Riptano named at launch (but I’ve forgotten who they were*)
Fetlife, Meebo, and others seem to at least have a healthy interest in Cassandra, based on their level of involvement in a forthcoming Cassandra Summit. That said, the @Fetlife tweetstream features numerous yelps of pain, and I don’t mean the recreational kind. Read more
Categories: Cassandra, DataStax, Facebook, Market share and customer counts, NoSQL, Open source, Parallelization, Pricing, Specific users | 5 Comments |
Cassandra technical overview
Back in March, I talked with Jonathan Ellis of Rackspace, who runs the Apache Cassandra project. I started drafting a blog post then, but never put it up. Then Jonathan cofounded Riptano, a company to commercialize Cassandra, and so I talked with him again in May. Well, I’m finally finding time to clear my Cassandra/Riptano backlog. I’ll cover the more technical parts below, and the more business- or usage-oriented ones in a companion Cassandra/Riptano post.
Jonathan’s core claims for Cassandra include:
- Cassandra is shared-nothing.
- Cassandra has good approaches to replication and partitioning, right out of the box.
- In particular, Cassandra is good for use cases that distribute a database around the world and want to access it at “local” latencies. (Indeed, Jonathan asserts that non-local replication is a significant non-big-data Cassandra use case.)
- Cassandra’s scale-out is application-transparent, unlike sharded MySQL’s.
- Cassandra is fast at both appends and range queries, which would be hard to accomplish in a pure key-value store.
In general, Jonathan positions Cassandra as being best-suited to handle a small number of operations at high volume, throughput, and speed. The rest of what you do, as far as he’s concerned, may well belong in a more traditional SQL DBMS. Read more
Categories: Amazon and its cloud, Cassandra, DataStax, Facebook, Google, Log analysis, NoSQL, Open source, Parallelization | 4 Comments |
Cloudera Enterprise and Hadoop evolution
I talked with Cloudera a couple of weeks ago in connection with the impending release of Cloudera Enterprise. I’d say: Read more
The most important part of the “social graph” is neither social nor a graph
“Social graph” is a highly misleading term, and so is “social network analysis.” By this I mean:
There’s something akin to “social graphs” and “social network analysis” that is more or less worthy of all the current hype – but graphs and network analysis are only a minor part of the whole story.
In particular, the most important parts of the Facebook “social graph” are neither social nor a graph. Rather, what’s really important is an aggregate Profile of Revealed Preferences, of which person-to-person connections or other things best modeled by a graph play only a small part.
Categories: Analytic technologies, Facebook, Games and virtual worlds, RDF and graphs, Surveillance and privacy, Web analytics | 13 Comments |
Notes on SciDB and scientific data management
I firmly believe that, as a community, we should look for ways to support scientific data management and related analytics. That’s why, for example, I went to XLDB3 in Lyon, France at my own expense. Eight months ago, I wrote about issues in scientific data management. Here’s some of what has transpired since then.
The main new activity I know of has been in the open source SciDB project. Read more
Categories: Analytic technologies, Data warehousing, eBay, GIS and geospatial, Microsoft and SQL*Server, SciDB, Scientific research, Web analytics | 5 Comments |
Stakeholder-facing analytics
There’s a point I keep making in speeches, and used to keep making in white papers, yet have almost never spelled out in this blog. Let me now (somewhat) correct the oversight.
Analytic technology isn’t only for you. It’s also for your customers, citizens, and other stakeholders.
I am not referring here to what is well understood to be an important, fast-growing activity — providing data and its analysis to customers as your primary or only business — nor to the related business of taking people’s data, crunching it for them, and giving them results. That combined sector — which I am pretty alone in aggregating into one and calling data mart outsourcing — is one of the top several vertical markets for a lot of the analytic DBMS vendors I write about. Rather, I’m talking about enterprises that gather data for some primary purpose, and have discovered that a good secondary use of the data is to reflect it back to stakeholders, often the same ones who provided or created it in the first place.
For now I’ll call this category stakeholder-facing analytics, as the shorter phrase “stakeholder analytics” would be ambiguous.* I first picked up the idea early this decade from Information Builders, for whom it had become something of a specialty. I’ve been asking analytics vendors for examples of stakeholder-facing analytics ever since, and a number have been able to comply. But the whole thing is in its early days even so; almost any sufficiently large enterprise should be more active in stakeholder-facing analytics than it currently is.
Read more