Facebook

Discussion of Facebook’s data management technologies. Related subjects include:

December 15, 2017

The technology industry is under broad political attack

I apologize for posting a December downer, but this needs to be said.

The technology industry is under attack:

These attacks:

You’ve surely noticed some of these attacks. But you may not have noticed just how many different attacks and criticisms there are, on multiple levels.

Read more

July 19, 2016

Notes on vendor lock-in

Vendor lock-in is an important subject. Everybody knows that. But few of us realize just how complicated the subject is, nor how riddled it is with paradoxes. Truth be told, I wasn’t fully aware either. But when I set out to write this post, I found that it just kept growing longer.

1. The most basic form of lock-in is:

2. Enterprise vendor standardization is closely associated with lock-in. The core idea is that you have a mandate or strong bias toward having different apps run over the same platforms, because:

3. That last point is double-edged; you have more power over suppliers to whom you give more business, but they also have more power over you. The upshot is often an ELA (Enterprise License Agreement), which commonly works:

Read more

July 19, 2016

Notes from a long trip, July 19, 2016

For starters:

A running list of recent posts is:

Subjects I’d like to add to that list include:

Read more

December 1, 2015

Machine learning’s connection to (the rest of) AI

This is part of a four post series spanning two blogs.

1. I think the technical essence of AI is usually:

Of course, a lot of non-AI software can be described the same way.

To check my claim, please consider:

To see why it’s true from a bottom-up standpoint, please consider the next two points.

2. It is my opinion that most things called “intelligence” — natural and artificial alike — have a great deal to do with pattern recognition and response. Examples of what I mean include:  Read more

June 8, 2015

Teradata will support Presto

At the highest level:

Now let’s make that all a little more precise.

Regarding Presto (and I got most of this from Teradata)::

Daniel Abadi said that Presto satisfies what he sees as some core architectural requirements for a modern parallel analytic RDBMS project:  Read more

March 17, 2015

More notes on HBase

1. Continuing from last week’s HBase post, the Cloudera folks were fairly proud of HBase’s features for performance and scalability. Indeed, they suggested that use cases which were a good technical match for HBase were those that required fast random reads and writes with high concurrency and strict consistency. Some of the HBase architecture for query performance seems to be:

Notwithstanding that a couple of those features sound like they might help with analytic queries, the base expectation is that you’ll periodically massage your HBase data into a more analytically-oriented form. For example — I was talking with Cloudera after all — you could put it into Parquet.

2. The discussion of which kinds of data are originally put into HBase was a bit confusing.

OpenTSDB, by the way, likes to store detailed data and aggregates side-by-side, which resembles a pattern I discussed in my recent BI for NoSQL post.

3. HBase supports caching, tiered storage, and so on. Cloudera is pretty sure that it is publicly known (I presume from blog posts or conference talks) that:  Read more

June 8, 2014

Optimism, pessimism, and fatalism — fault-tolerance, Part 2

The pessimist thinks the glass is half-empty.
The optimist thinks the glass is half-full.
The engineer thinks the glass was poorly designed.

Most of what I wrote in Part 1 of this post was already true 15 years ago. But much gets added in the modern era, considering that:

And so there’s been innovation in numerous cluster-related subjects, two of which are:

Distributed database consistency

When a distributed database lives up to the same consistency standards as a single-node one, distributed query is straightforward. Performance may be an issue, however, which is why we have seen a lot of:

But in workloads with low-latency writes, living up to those standards is hard. The 1980s approach to distributed writing was two-phase commit (2PC), which may be summarized as:  Read more

April 30, 2014

Hardware and storage notes

My California trip last week focused mainly on software — duh! — but I had some interesting hardware/storage/architecture discussions as well, especially in the areas of:

I also got updated as to typical Hadoop hardware.

If systems are designed at the whole-rack level or higher, then there can be much more flexibility and efficiency in terms of mixing and connecting CPU, RAM and storage. The Google/Facebook/Amazon cool kids are widely understood to be following this approach, so others are naturally considering it as well. My most interesting of several mentions of that point was when I got the chance to talk with Berkeley computer architecture guru Dave Patterson, who’s working on plans for 100-petabyte/terabit-networking kinds of systems, for usage after 2020 or so. (If you’re interested, you might want to contact him; I’m sure he’d love more commercial sponsorship.)

One of Dave’s design assumptions is that Moore’s Law really will end soon (or at least greatly slow down), if by Moore’s Law you mean that every 18 months or so one can get twice as many transistors onto a chip of the same area and cost than one could before. However, while he thinks that applies to CPU and RAM, Dave thinks flash is an exception. I gathered that he thinks the power/heat reasons for Moore’s Law to end will be much harder to defeat than the other ones; note that flash, because of what it’s used for, has vastly less power running through it than CPU or RAM do.

Read more

April 30, 2014

Cloudera, Impala, data warehousing and Hive

There’s much confusion about Cloudera’s SQL plans and beliefs, and the company has mainly itself to blame. That said, here’s what I think is going on.

And of course, as vendors so often do, Cloudera generally overrates both the relative maturity of Impala and the relative importance of the use cases in which its offerings – Impala or otherwise – shine.

Related links

December 8, 2013

DataStax/Cassandra update

Cassandra’s reputation in many quarters is:

This has led competitors to use, and get away with, sales claims along the lines of “Well, if you really need geo-distribution and can’t wait for us to catch up — which we soon will! — you should use Cassandra. But otherwise, there are better choices.”

My friends at DataStax, naturally, don’t think that’s quite fair. And so I invited them — specifically Billy Bosworth and Patrick McFadin — to educate me. Here are some highlights of that exercise.

DataStax and Cassandra have some very impressive accounts, which don’t necessarily revolve around geo-distribution. Netflix, probably the flagship Cassandra user — since Cassandra inventor Facebook adopted HBase instead — actually hasn’t been using the geo-distribution feature. Confidential accounts include:

DataStax and Cassandra won’t necessarily win customer-brag wars versus MongoDB, Couchbase, or even HBase, but at least they’re strongly in the competition.

DataStax claims that simplicity is now a strength. There are two main parts to that surprising assertion. Read more

Next Page →

Feed: DBMS (database management system), DW (data warehousing), BI (business intelligence), and analytics technology Subscribe to the Monash Research feed via RSS or email:

Login

Search our blogs and white papers

Monash Research blogs

User consulting

Building a short list? Refining your strategic plan? We can help.

Vendor advisory

We tell vendors what's happening -- and, more important, what they should do about it.

Monash Research highlights

Learn about white papers, webcasts, and blog highlights, by RSS or email.