Solid-state memory

Discussion of how developments in solid-state memory will affect database management. Related subjects include:

September 8, 2013

Layering of database technology & DBMS with multiple DMLs

Two subjects in one post, because they were too hard to separate from each other

Any sufficiently complex software is developed in modules and subsystems. DBMS are no exception; the core trinity of parser, optimizer/planner, and execution engine merely starts the discussion. But increasingly, database technology is layered in a more fundamental way as well, to the extent that different parts of what would seem to be an integrated DBMS can sometimes be developed by separate vendors.

Major examples of this trend — where by “major” I mean “spanning a lot of different vendors or projects” — include:

Other examples on my mind include:

And there are several others I hope to blog about soon, e.g. current-day PostgreSQL.

In an overlapping trend, DBMS increasingly have multiple data manipulation APIs. Examples include:  Read more

August 6, 2013

Hortonworks, Hadoop, Stinger and Hive

I chatted yesterday with the Hortonworks gang. The main subject was Hortonworks’ approach to SQL-on-Hadoop — commonly called Stinger —  but at my request we cycled through a bunch of other topics as well. Company-specific notes include:

Our deployment and use case discussions were a little confused, because a key part of Hortonworks’ strategy is to support and encourage the idea of combining use cases and workloads on a single cluster. But I did hear:

*By the way — Teradata seems serious about pushing the UDA as a core message.

Ecosystem notes, in Hortonworks’ perception, included:

I also asked specifically about OpenStack. Hortonworks is a member of the OpenStack project, contributes nontrivially to Swift and other subprojects, and sees Rackspace as an important partner. But despite all that, I think strong Hadoop/OpenStack integration is something for the indefinite future.

Hortonworks’ views about Hadoop 2.0 start from the premise that its goal is to support running a multitude of workloads on a single cluster. (See, for example, what I previously posted about Tez and YARN.) Timing notes for Hadoop 2.0 include:

Frankly, I think Cloudera’s earlier and necessarily incremental Hadoop 2 rollout was a better choice than Hortonworks’ later big bang, even though the core-mission aspect of Hadoop 2.0 is what was least ready. HDFS (Hadoop Distributed File System) performance, NameNode failover and so on were well worth having, and it’s more than a year between Cloudera starting supporting them and when Hortonworks is offering Hadoop 2.0.

Hortonworks’ approach to doing SQL-on-Hadoop can be summarized simply as “Make Hive into as good an analytic RDBMS as possible, all in open source”. Key elements include:  Read more

February 21, 2013

One database to rule them all?

Perhaps the single toughest question in all database technology is: Which different purposes can a single data store serve well? — or to phrase it more technically — Which different usage patterns can a single data store support efficiently? Ted Codd was on multiple sides of that issue, first suggesting that relational DBMS could do everything and then averring they could not. Mike Stonebraker too has been on multiple sides, first introducing universal DBMS attempts with Postgres and Illustra/Informix, then more recently suggesting the world needs 9 or so kinds of database technology. As for me — well, I agreed with Mike both times. 🙂

Since this is MUCH too big a subject for a single blog post, what I’ll do in this one is simply race through some background material. To a first approximation, this whole discussion is mainly about data layouts — but only if we interpret that concept broadly enough to comprise:

To date, nobody has ever discovered a data layout that is efficient for all usage patterns. As a general rule, simpler data layouts are often faster to write, while fancier ones can boost query performance. Specific tradeoffs include, but hardly are limited to: Read more

October 17, 2012

Notes on Hadoop hardware

I talked with Cloudera yesterday about an unannounced technology, and took the opportunity to ask some non-embargoed questions as well. In particular, I requested an update to what I wrote last year about typical Hadoop hardware.

Cloudera thinks the picture now is:

Discussion around that included:

Read more

October 17, 2012

Notes on analytic hardware

I took the opportunity of Teradata’s Aster/Hadoop appliance announcement to catch up with Teradata hardware chief Carson Schmidt. I love talking with Carson, about both general design philosophy and his views on specific hardware component technologies.

From a hardware-requirements standpoint, Carson seems to view Aster and Hadoop as more similar to each other than either is to, say, a Teradata Active Data Warehouse. In particular, for Aster and Hadoop:

The most obvious implication is differences in the choice of parts, and of their ratio. Also, in the new Aster/Hadoop appliance, Carson is content to skate by with RAID 5 rather than RAID 1.

I think Carson’s views about flash memory can be reasonably summarized as: Read more

October 1, 2012

Notes on the Oracle OpenWorld Sunday keynote

I’m not at Oracle OpenWorld, but as usual that won’t keep me from commenting. My bottom line on the first night’s announcements is:

In particular:

1. At the highest level, my view of Oracle’s strategy is the same as it’s been for several years:

Clayton Christensen’s The Innovator’s Solution teaches us that Oracle should focus on selling a thick stack of technology to its highest-end customers, and that’s exactly what Oracle does focus on.

2. Tonight’s news is closely in line with what Oracle’s Juan Loaiza told me three years ago, especially:

  • Oracle thinks flash memory is the most important hardware technology of the decade, one that could lead to Oracle being “bumped off” if they don’t get it right.
  • Juan believes the “bulk” of Oracle’s business will move over to Exadata-like technology over the next 5-10 years. Numbers-wise, this seems to be based more on Exadata being a platform for consolidating an enterprise’s many Oracle databases than it is on Exadata running a few Especially Big Honking Database management tasks.

3. Oracle is confusing people with its comments on multi-tenancy. I suspect:

4. SaaS (Software as a Service) vendors don’t want to use Oracle, because they don’t want to pay for it.* This limits the potential impact of Oracle’s true multi-tenancy features. Even so: Read more

July 12, 2012

Disk, flash, and RAM

Three months ago, I pointed out that it is hard to generalize about memory-centric database management, because there are so many different kinds. That said, there are some basic points that I’d like to record as background for any future discussion of the subject, focusing on differences between disk and RAM. And while I’m at it, I’ll throw in a few comments about flash memory as well.

This post would probably be better if I had actual numbers for the speeds of various kinds of silicon operations, but I’ll do what I can without them.

For most purposes, database speed is a function of a few kinds of number:

The amount of storage used is also important, both directly — storage hardware costs money — and because if you save storage via compression, you may get corresponding benefits in I/O. Power consumption and similar costs are usually tied to hardware efficiency; the less gear you use, the less floor space and cooling you may be able to get away with.

When databases move to RAM from spinning disk, major consequences include: Read more

June 27, 2012

Schooner got acquired by SanDisk

SanDisk has acquired my client Schooner Information Technology. Notes on that include:

That’s about all I have at this time.

April 4, 2012

IBM DB2 10

Shortly before Tuesday’s launch of DB2 10, IBM’s Conor O’Mahony checked in for a relatively non-technical briefing.* More precisely, this is about DB2 for “distributed” systems, aka LUW (Linux/Unix/Windows); some of the features have already been in the mainframe version of DB2 for a while. IBM is graciously permitting me to post the associated DB2 10 announcement slide deck.

*I hope any errors in interpretation are minor.

Major aspects of DB2 10 include new or improved capabilities in the areas of:

Of course, there are various other enhancements too, including to security (fine-grained access control), Oracle compatibility, and DB2 pureScale. Everything except the pureScale part is also reflected in IBM InfoSphere Warehouse, which is a near-superset of DB2.*

*Also, the data ingest part isn’t in base DB2.

Read more

March 9, 2012

Hardware and components — lessons from Teradata

I love talking with Carson Schmidt, chief of Teradata’s hardware engineering (among other things), even if I don’t always understand the details of what he’s talking about. It had been way too long since our last chat, so I requested another one. We were joined by Keith Muller, who I presume is pictured here. Takeaways included:

Read more

← Previous PageNext Page →

Feed: DBMS (database management system), DW (data warehousing), BI (business intelligence), and analytics technology Subscribe to the Monash Research feed via RSS or email:

Login

Search our blogs and white papers

Monash Research blogs

User consulting

Building a short list? Refining your strategic plan? We can help.

Vendor advisory

We tell vendors what's happening -- and, more important, what they should do about it.

Monash Research highlights

Learn about white papers, webcasts, and blog highlights, by RSS or email.