Storage
Analysis of storage technologies, especially in the context of database management. Related subjects include:
Patent nonsense: Parallel Iron/HDFS edition
Alan Scott commented with concern about Parallel Iron’s patent lawsuit attacking HDFS (Hadoop Distributed File System), filed in — where else? — Eastern Texas. The patent in question — US 7,415,565 — seems to in essence cover any shared-nothing block storage that exploits a “configurable switch fabric”; indeed, it’s more oriented to OLTP (OnLine Transaction Processing) than to analytics. For example, the Background section starts: Read more
Categories: EMC, Hadoop, MapReduce, Parallelization, Storage | 9 Comments |
Hardware for Hadoop
After suggesting that there’s little point to Hadoop appliances, it occurred to me to look into what kinds of hardware actually are used with Hadoop. So far as I can tell:
- Hadoop nodes today tend to run on fairly standard boxes.
- Hadoop nodes in the past have tended to run on boxes that were light with respect to RAM.
- The number of spindles per core on Hadoop node boxes is going up even as disks get bigger.
Notes from the Fusion-io S-1 filing
Fusion-io has filed for an initial public offering. With public offerings go S-1 filings which, along with 10-Ks, are the kinds of SEC filing that typically contain a few nuggets of business information. Notes from Fusion-io’s S-1 include:
Fusion-io is growing very, very fast, doubling or better in revenue every 6 months.
Fusion-io’s marketing message revolves around “data centralization”. Fusion-io is competing against storage-area networks and storage arrays.
Fusion-io’s list of application types includes
… systems dedicated to decision support, high performance financial analysis, web search, content delivery and enterprise resource planning.
Fusion-io says it has shipped over 20 petabytes of storage.
Fusion-io has a shifting array of big customers, including OEMs: Read more
Categories: Analytic technologies, Data warehousing, Facebook, Solid-state memory, Storage | Leave a Comment |
Traditional databases will eventually wind up in RAM
In January, 2010, I posited that it might be helpful to view data as being divided into three categories:
- Human/Tabular data –i.e., human-generated data that fits well into relational tables or arrays.
- Human/Nontabular data — i.e., all other data generated by humans.
- Machine-Generated data.
I won’t now stand by every nuance in that post, which may differ slightly from those in my more recent posts about machine-generated data and poly-structured databases. But one general idea is hard to dispute:
Traditional database data — records of human transactional activity, referred to as “Human/Tabular data above” — will not grow as fast as Moore’s Law makes computer chips cheaper.
And that point has a straightforward corollary, namely:
It will become ever more affordable to put traditional database data entirely into RAM. Read more
Oracle and Exadata: Business and technical notes
Last Friday I stopped by Oracle for my first conversation since January, 2010, in this case for a chat with Andy Mendelsohn, Mark Townsend, Tim Shetler, and George Lumpkin, covering Exadata and the Oracle DBMS. Key points included: Read more
Notes on short-request scale-out MySQL
A press person recently asked about:
… start-ups that are building technologies to enable MySQL and other SQL databases to get over some of the problems they have in scaling past a certain size. … I’d like to get a sense as to whether or not the problems are as severe and wide spread as these companies are telling me? If so, why wouldn’t a customer just move to a new database?
While that sounds as if he was asking about scale-out relational DBMS in general, MySQL or otherwise, short-request or analytic, it turned out that he was asking just about short-request scale-out MySQL. My thoughts and comments on that narrower subject include(d) but are not limited to: Read more
Teradata integrates in solid-state storage
For once, I think Teradata’s annual hardware refresh is pretty interesting, because of the integration of flash storage into its high-end “active enterprise data warehouse” product line. The essence of the announcement is:
- Teradata is rolling out a new appliance,* the 6680, which combines hard-disk and solid-state drives, relying on Teradata Virtual Storage.
- Teradata is also rolling out a hard-disk-based appliance,* the 6650, in a more routine annual refresh.
Categories: Data warehouse appliances, Pricing, Solid-state memory, Teradata | 3 Comments |
Comments on EMC Greenplum
I am annoyed with my former friends at Greenplum, who took umbrage at a brief sentence I wrote in October, namely “eBay has thrown out Greenplum“. Their reaction included:
- EMC Greenplum no longer uses my services.
- EMC Greenplum no longer briefs me.
- EMC Greenplum reneged on a commitment to fund an effort in the area of privacy.
The last one really hurt, because in trusting them, I put in quite a bit of effort, and discussed their promise with quite a few other people.
Membase and CouchOne merged to form Couchbase
Membase, the company whose product is Membase and whose former company name is Northscale, has merged with CouchOne, the company whose product is CouchDB and whose former name is Couch.io. The result (product and company) will be called Couchbase. CouchDB inventor Damien Katz will join the Membase (now Couchbase) management team as CTO. Couchbase can reasonably be regarded as a document-oriented NoSQL DBMS, a product category I not coincidentally posted about yesterday.
In essence, Couchbase will be CouchDB with scale-out. Alternatively, Couchbase will be Membase with a richer programming interface. The Couchbase sweet spot is likely to be: Read more
Categories: Application areas, Cache, Couchbase, CouchDB, Market share and customer counts, memcached, NoSQL, Open source, Parallelization, Solid-state memory | 2 Comments |
Comments on the Gartner 2010/2011 Data Warehouse Database Management Systems Magic Quadrant
Edit: Comments on the February, 2012 Gartner Magic Quadrant for Data Warehouse Database Management Systems — and on the companies reviewed in it — are now up.
The Gartner 2010 Data Warehouse Database Management Systems Magic Quadrant is out. I shall now comment, just as I did to varying degrees on the 2009, 2008, 2007, and 2006 Gartner Data Warehouse Database Management System Magic Quadrants.
Note: Links to Gartner Magic Quadrants tend to be unstable. Please alert me if any problems arise; I’ll edit accordingly.
In my comments on the 2008 Gartner Data Warehouse Database Management Systems Magic Quadrant, I observed that Gartner’s “completeness of vision” scores were generally pretty reasonable, but their “ability to execute” rankings were somewhat bizarre; the same remains true this year. For example, Gartner ranks Ingres higher by that metric than Vertica, Aster Data, ParAccel, or Infobright. Yet each of those companies is growing nicely and delivering products that meet serious cutting-edge analytic DBMS needs, neither of which has been true of Ingres since about 1987. Read more