Cloud computing
Analysis of cloud computing, especially as applied to database management and analytics. Related subjects include:
Oracle as the new IBM — has a long decline started?
When I find myself making the same observation fairly frequently, that’s a good impetus to write a post based on it. And so this post is based on the thought that there are many analogies between:
- Oracle and the Oracle DBMS.
- IBM and the IBM mainframe.
And when you look at things that way, Oracle seems to be swimming against the tide.
Drilling down, there are basically three things that can seriously threaten Oracle’s market position:
- Growth in apps of the sort for which Oracle’s RDBMS is not well-suited. Much of “Big Data” fits that description.
- Outright, widespread replacement of Oracle’s application suites. This is the least of Oracle’s concerns at the moment, but could of course be a disaster in the long term.
- Transition to “the cloud”. This trend amplifies the other two.
Oracle’s decline, if any, will be slow — but I think it has begun.
Oracle/IBM analogies
There’s a clear market lead in the core product category. IBM was dominant in mainframe computing. While not as dominant, Oracle is definitely a strong leader in high-end OTLP/mixed-use (OnLine Transaction Processing) RDBMS.
That market lead is even greater than it looks, because some of the strongest competitors deserve asterisks. Many of IBM’s mainframe competitors were “national champions” — Fujitsu and Hitachi in Japan, Bull in France and so on. Those were probably stronger competitors to IBM than the classic BUNCH companies (Burroughs, Univac, NCR, Control Data, Honeywell).
Similarly, Oracle’s strongest direct competitors are IBM DB2 and Microsoft SQL Server, each of which is sold primarily to customers loyal to the respective vendors’ full stacks. SAP is now trying to play a similar game.
The core product is stable, secure, richly featured, and generally very mature. Duh.
The core product is complicated to administer — which provides great job security for administrators. IBM had JCL (Job Control Language). Oracle has a whole lot of manual work overseeing indexes. In each case, there are many further examples of the point. Edit: A Twitter discussion suggests the specific issue with indexes has been long fixed.
Niche products can actually be more reliable than the big, super-complicated leader. Tandem Nonstop computers were super-reliable. Simple, “embeddable” RDBMS — e.g. Progress or SQL Anywhere — in many cases just work. Still, if you want one system to run most of your workload 24×7, it’s natural to choose the category leader. Read more
Categories: Cloud computing, Database diversity, Exadata, IBM and DB2, Market share and customer counts, Microsoft and SQL*Server, NoSQL, Oracle, Software as a Service (SaaS) | 28 Comments |
Transitioning to the cloud(s)
There’s a lot of talk these days about transitioning to the cloud, by IT customers and vendors alike. Of course, I have thoughts on the subject, some of which are below.
1. The economies of scale of not running your own data centers are real. That’s the kind of non-core activity almost all enterprises should outsource. Of course, those considerations taken alone argue equally for true cloud, co-location or SaaS (Software as a Service).
2. When the (Amazon) cloud was newer, I used to hear that certain kinds of workloads didn’t map well to the architecture Amazon had chosen. In particular, shared-nothing analytic query processing was necessarily inefficient. But I’m not hearing nearly as much about that any more.
3. Notwithstanding the foregoing, not everybody loves Amazon pricing.
4. Infrastructure vendors such as Oracle would like to also offer their infrastructure to you in the cloud. As per the above, that could work. However:
- Is all your computing on Oracle’s infrastructure? Probably not.
- Do you want to move the Oracle part and the non-Oracle part to different clouds? Ideally, no.
- Do you like the idea of being even more locked in to Oracle than you are now? [Insert BDSM joke here.]
- Will Oracle do so much better of a job hosting its own infrastructure that you use its cloud anyway? Well, that’s an interesting question.
Actually, if we replace “Oracle” by “Microsoft”, the whole idea sounds better. While Microsoft doesn’t have a proprietary server hardware story like Oracle’s, many folks are content in the Microsoft walled garden. IBM has fiercely loyal customers as well, and so may a couple of Japanese computer manufacturers.
5. Even when running stuff in the cloud is otherwise a bad idea, there’s still: Read more
Categories: Amazon and its cloud, Cloud computing, Emulation, transparency, portability, IBM and DB2, Microsoft and SQL*Server, Oracle, Pricing | 6 Comments |
SaaS and traditional software from the same vendor?
It is extremely difficult to succeed with SaaS (Software as a Service) and packaged software in the same company. There were a few vendors who seemed to pull it off in the 1970s and 1980s, generally industry-specific application suite vendors. But it’s hard to think of more recent examples — unless you have more confidence than I do in what behemoth software vendors say about their SaaS/”cloud” businesses.
Despite the cautionary evidence, I’m going to argue that SaaS and software can and often should be combined. The “should” part is pretty obvious, with reasons that start:
- Some customers are clearly better off with SaaS. (E.g., for simplicity.)
- Some customers are clearly better off with on-premises software. (E.g., to protect data privacy.)
- On-premises customers want to know they have a path to the cloud.
- Off-premises customers want the possibility of leaving their SaaS vendor’s servers.
- SaaS can be great for testing, learning or otherwise adopting software that will eventually be operated in-house.
- Marketing and sales efforts for SaaS and packaged versions can be synergistic.
- The basic value proposition, competitive differentiation, etc. should be the same, irrespective of delivery details.
- In some cases, SaaS can be the lower cost/lower commitment option, while packaged product can be the high end or upsell.
- An ideal sales force has both inside/low-end and bag-carrying/high-end components.
But the “how” of combining SaaS and traditional software is harder. Let’s review why. Read more
Databricks and Spark update
I chatted last night with Ion Stoica, CEO of my client Databricks, for an update both on his company and Spark. Databricks’ actual business is Databricks Cloud, about which I can say:
- Databricks Cloud is:
- Spark-as-a-Service.
- Currently running on Amazon only.
- Not dependent on Hadoop.
- Databricks Cloud, despite having a 1.0 version number, is not actually in general availability.
- Even so, there are a non-trivial number of paying customers for Databricks Cloud. (Ion gave me an approximate number, but is keeping it NDA until Spark Summit East.)
- Databricks Cloud gets at data from S3 (most commonly), Redshift, Elastic MapReduce, and perhaps other sources I’m forgetting.
- Databricks Cloud was initially focused on ad-hoc use. A few days ago the capability was added to schedule jobs and so on.
- Unsurprisingly, therefore, Databricks Cloud has been used to date mainly for data exploration/visualization and ETL (Extract/Transform/Load). Visualizations tend to be scripted/programmatic, but there’s also an ODBC driver used for Tableau access and so on.
- Databricks Cloud customers are concentrated (but not unanimously so) in the usual-suspect internet-centric business sectors.
- The low end of the amount of data Databricks Cloud customers are working with is 100s of gigabytes. This isn’t surprising.
- The high end of the amount of data Databricks Cloud customers are working with is petabytes. That did surprise me, and in retrospect I should have pressed for details.
I do not expect all of the above to remain true as Databricks Cloud matures.
Ion also said that Databricks is over 50 people, and has moved its office from Berkeley to San Francisco. He also offered some Spark numbers, such as: Read more
Data models
7-10 years ago, I repeatedly argued the viewpoints:
- Relational DBMS were the right choice in most cases.
- Multiple kinds of relational DBMS were needed, optimized for different kinds of use case.
- There were a variety of specialized use cases in which non-relational data models were best.
Since then, however:
- Hadoop has flourished.
- NoSQL has flourished.
- Graph DBMS have matured somewhat.
- Much of the action has shifted to machine-generated data, of which there are many kinds.
So it’s probably best to revisit all that in a somewhat organized way.
Hadoop’s next refactoring?
I believe in all of the following trends:
- Hadoop is a Big Deal, and here to stay.
- Spark, for most practical purposes, is becoming a big part of Hadoop.
- Most servers will be operated away from user premises, whether via SaaS (Software as a Service), co-location, or “true” cloud computing.
Trickier is the meme that Hadoop is “the new OS”. My thoughts on that start:
- People would like this to be true, although in most cases only as one of several cluster computing platforms.
- Hadoop, when viewed as an operating system, is extremely primitive.
- Even so, the greatest awkwardness I’m seeing when different software shares a Hadoop cluster isn’t actually in scheduling, but rather in data interchange.
There is also a minor issue that if you distribute your Hadoop work among extra nodes you might have to pay a bit more to your Hadoop distro support vendor. Fortunately, the software industry routinely solves more difficult pricing problems than that.
Categories: Cloud computing, Databricks, Spark and BDAS, Hadoop, MapReduce, MemSQL, Software as a Service (SaaS) | 15 Comments |
Is analytic data management finally headed for the cloud?
It seems reasonable to wonder whether analytic data management is headed for the cloud. In no particular order:
- Amazon Redshift appears to be prospering.
- So are some SaaS (Software as a Service) business intelligence vendors.
- Amazon Elastic MapReduce is still around.
- Snowflake Computing launched with a cloud strategy.
- Cazena, with vague intentions for cloud data warehousing, destealthed.*
- Cloudera made various cloud-related announcements.
- Data is increasingly machine-generated, and machine-generated data commonly originates off-premises.
- The general argument for cloud-or-at-least-colocation has compelling aspects.
- Analytic workloads can be “bursty”, and so could benefit from true cloud elasticity.
Categories: Amazon and its cloud, Cloud computing, Data warehousing, Netezza | 3 Comments |
Snowflake Computing
I talked with the Snowflake Computing guys Friday. For starters:
- Snowflake is offering an analytic DBMS on a SaaS (Software as a Service) basis.
- The Snowflake DBMS is built from scratch (as opposed, to for example, being based on PostgreSQL or Hadoop).
- The Snowflake DBMS is columnar and append-only, as has become common for analytic RDBMS.
- Snowflake claims excellent SQL coverage for a 1.0 product.
- Snowflake, the company, has:
- 50 people.
- A similar number of current or past users.
- 5 referenceable customers.
- 2 techie founders out of Oracle, plus Marcin Zukowski.
- Bob Muglia as CEO.
Much of the Snowflake story can be summarized as cloud/elastic/simple/cheap.*
*Excuse me — inexpensive. Companies rarely like their products to be labeled as “cheap”.
In addition to its purely relational functionality, Snowflake accepts poly-structured data. Notes on that start:
- Ingest formats are JSON, XML or AVRO for now.
- I gather that the system automagically decides which fields/attributes are sufficiently repeated to be broken out as separate columns; also, there’s a column for the documents themselves.
I don’t know enough details to judge whether I’d call that an example of schema-on-need.
A key element of Snowflake’s poly-structured data story seems to be lateral views. I’m not too clear on that concept, but I gather: Read more
Cloudera’s announcements this week
This week being Hadoop World, Cloudera naturally put out a flurry of press releases. In anticipation, I put out a context-setting post last weekend. That said, the gist of the news seems to be:
- Cloudera continued to improve various aspects of its product line, especially Impala with a Version 2.0. Good for them. One should always be making one’s products better.
- Cloudera announced a variety of partnerships with companies one would think are opposed to it. Not all are Barney. I’m now hard-pressed to think of any sustainable-looking relationship advantage Hortonworks has left in the Unix/Linux world. (However, I haven’t heard a peep about any kind of Cloudera/Microsoft/Windows collaboration.)
- Cloudera is getting more cloud-friendly, via a new product — Cloudera Director. Probably there are or will be some cloud-services partnerships as well.
Notes on Cloudera Director start:
- It’s closed-source.
- Code and support are included in any version of Cloudera Enterprise.
- It’s a management tool. Indeed, Cloudera characterized it to me as a sort of manager of Cloudera Managers.
What I have not heard is any answer for the traditional performance challenge of Hadoop-in-the-cloud, which is:
- Hadoop, like most analytic RDBMS, tightly couples processing and storage in a shared-nothing way.
- Standard cloud architectures, however, decouple them, thus mooting a considerable fraction of Hadoop performance engineering.
Maybe that problem isn’t — or is no longer — as big a deal as I’ve been told.
Categories: Cloud computing, Cloudera, Hadoop, Hortonworks | 15 Comments |
Some stuff on my mind, September 28, 2014
1. I wish I had some good, practical ideas about how to make a political difference around privacy and surveillance. Nothing else we discuss here is remotely as important. I presumably can contribute an opinion piece to, more or less, the technology publication(s) of my choice; that can have a small bit of impact. But I’d love to do better than that. Ideas, anybody?
2. A few thoughts on cloud, colocation, etc.:
- The economies of scale of colocation-or-cloud over operating your own data center are compelling. Most of the reasons you outsource hardware manufacture to Asia also apply to outsourcing data center operation within the United States. (The one exception I can think of is supply chain.)
- The arguments for cloud specifically over colocation are less persuasive. Colo providers can even match cloud deployments in rapid provisioning and elastic pricing, if they so choose.
- Surely not coincidentally, I am told that Rackspace is deemphasizing cloud, reemphasizing colocation, and making a big deal out of Open Compute. In connection with that, Rackspace has pulled back from its leadership role in OpenStack.
- I’m hearing much more mention of Amazon Redshift than I used to. It seems to have a lot of traction as a simple and low-cost option.
- I’m hearing less about Elastic MapReduce than I used to, although I imagine usage is still large and growing.
- In general, I get the impression that progress is being made in overcoming the inherent difficulties in cloud (and even colo) parallel analytic processing. But it all still seems pretty vague, except for the specific claims being made for traction of Redshift, EMR, and so on.
- Teradata recently told me that in colocation pricing, it is common for floor space to be everything, with power not separately metered. But I don’t think that trend is a big deal, as it is not necessarily permanent.
- Cloud hype is of course still with us.
- Other than the above, I stand by my previous thoughts on appliances, clusters and clouds.
3. As for the analytic DBMS industry: Read more