Workday
Analysis of SaaS vendor Workday, Inc., and especially of its innovative technology strategy.
Notes from a long trip, July 19, 2016
For starters:
- I spent three weeks in California on a hybrid personal/business trip. I had a bunch of meetings, but not three weeks’ worth.
- The timing was awkward for most companies I wanted to see. No blame accrues to those who didn’t make themselves available.
- I came back with a nasty cough. Follow-up phone calls aren’t an option until next week.
- I’m impatient to start writing. Hence tonight’s posts. But it’s difficult for a man and his cough to be productive at the same time.
A running list of recent posts is:
- As a companion to this post, I’m publishing a very long one on vendor lock-in.
- Spark and Databricks are both prospering, and of course enhancing their technology as well.
- Ditto DataStax.
- Flink is interesting as the streaming technology it’s now positioned to be, rather than the overall Spark alternative it used to be positioned as but which the world didn’t need.
Subjects I’d like to add to that list include:
- MemSQL, Zoomdata, and Neo Technology (also prospering).
- Cloudera (multiple topics, as usual).
- Analytic SQL engines (“traditional” analytic RDBMS aren’t doing well).
- Microsoft’s reinvention (it feels real).
- Metadata (it’s ever more of a thing).
- Machine learning (it’s going to be a big portion of my research going forward).
- Transitions to the cloud — this subject affects almost everything else.
Thoughts on SaaS
Generalizing about SaaS (Software as a Service) is hard. To prune some of the confusion, let’s start by noting:
- SaaS has been around for over half a century, and at times has been the dominant mode of application delivery.
- The term multi-tenancy is being used in several different ways.
- Multi-tenancy, in the purest sense, is inessential to SaaS. It’s simply an implementation choice that has certain benefits for the SaaS provider. And by the way, …
- … salesforce.com, the chief proponent of the theory that true multi-tenancy is the hallmark of true SaaS, abandoned that position this week.
- Internet-based services are commonly, if you squint a little, SaaS. Examples include but are hardly limited to Google, Twitter, Dropbox, Intuit, Amazon Web Services, and the company that hosts this blog (KnownHost).
- Some of the core arguments for SaaS’ rise, namely the various efficiencies of data center outsourcing and scale, apply equally to the public cloud, to SaaS, and to AEaaS (Anything Else as a Service).
- These benefits are particularly strong for inherently networked use cases. For example, you really don’t want to be hosting your website yourself. And salesforce.com got its start supporting salespeople who worked out of remote offices.
- In theory and occasionally in practice, certain SaaS benefits, namely the outsourcing of software maintenance and updates, could be enjoyed on-premises as well. Whether I think that could be a bigger deal going forward will be explored in future posts.
For smaller enterprises, the core outsourcing argument is compelling. How small? Well:
- What’s the minimum level of IT operations headcount needed for mission-critical systems? Let’s just say “several”.
- What does that cost? Fully burdened, somewhere in the six figures.
- What fraction of the IT budget should such headcount be? As low a double digit percentage as possible.
- What fraction of revenues should be spent on IT? Some single-digit percentage.
So except for special cases, an enterprise with less than $100 million or so in revenue may have trouble affording on-site data processing, at least at a mission-critical level of robustness. It may well be better to use NetSuite or something like that, assuming needed features are available in SaaS form.*
Thoughts on in-memory columnar add-ons
Oracle announced its in-memory columnar option Sunday. As usual, I wasn’t briefed; still, I have some observations. For starters:
- Oracle, IBM (Edit: See the rebuttal comment below), and Microsoft are all doing something similar …
- … because it makes sense.
- The basic idea is to take the technology that manages indexes — which are basically columns+pointers — and massage it into an actual column store. However …
- … the devil is in the details. See, for example, my May post on IBM’s version, called BLU, outlining all the engineering IBM did around that feature.
- Notwithstanding certain merits of this approach, I don’t believe in complete alternatives to analytic RDBMS. The rise of analytic DBMS oriented toward multi-structured data just strengthens that point.
I’d also add that Larry Ellison’s pitch “build columns to avoid all that index messiness” sounds like 80% bunk. The physical overhead should be at least as bad, and the main saving in administrative overhead should be that, in effect, you’re indexing ALL columns rather than picking and choosing.
Anyhow, this technology should be viewed as applying to traditional business transaction data, much more than to — for example — web interaction logs, or other machine-generated data. My thoughts around that distinction start:
- I argued back in 2011 that traditional databases will wind up in RAM, basically because …
- … Moore’s Law will make it ever cheaper to store them there.
- Still, cheaper != cheap, so this is a technology only to use with your most valuable data — i.e., that transactional stuff.
- These are very tabular technologies, without much in the way of multi-structured data support.
Categories: Columnar database management, Data warehousing, IBM and DB2, Memory-centric data management, Microsoft and SQL*Server, OLTP, Oracle, SAP AG, Workday | 6 Comments |
The refactoring of everything
I’ll start with three observations:
- Computer systems can’t be entirely tightly coupled — nothing would ever get developed or tested.
- Computer systems can’t be entirely loosely coupled — nothing would ever get optimized, in performance and functionality alike.
- In an ongoing trend, there is and will be dramatic refactoring as to which connections wind up being loose or tight.
As written, that’s probably pretty obvious. Even so, it’s easy to forget just how pervasive the refactoring is and is likely to be. Let’s survey some examples first, and then speculate about consequences. Read more
Workday update
In August 2010, I wrote about Workday’s interesting technical architecture, highlights of which included:
- Lots of small Java objects in memory.
- A very simple MySQL backing store (append-only, <10 tables).
- Some modernistic approaches to application navigation.
- A faceted approach to BI.
I caught up with Workday recently, and things have naturally evolved. Most of what we talked about (by my choice) dealt with data management, business intelligence, and the overlap between the two.
It is now reasonable to say that Workday’s servers fall into at least seven tiers, although we talked mainly about five that work together as a kind of giant app/database server amalgamation. The three that do noteworthy data management can be described as:
- In-memory objects and transactions. This is similar to what Workday had before.
- Persistent MySQL. Part of this is similar to what Workday had before. In addition, Workday is now storing certain data in tables in the ordinary relational way.
- In-memory caching and indexing. This has three aspects:
- Indexes for the ordinary relational tables, organized in interesting ways.
- Indexes for Workday’s search-box navigation (as per my original Workday technical post, you can search across objects, task-names, etc.).
- Compressed copies of the Java objects, used to instantiate other servers as needed. The most obvious uses of this are:
- Recovery for the object/transaction tier.
- Launch for the elastic compute tier. (Described below.)
Two other Workday server tiers may be described as: Read more
Notes on graph data management
This post is part of a series on managing and analyzing graph data. Posts to date include:
- Graph data model basics (this post)
- Relationship analytics definition
- Relationship analytics applications
- Analysis of large graphs
Interest in graph data models keeps increasing. But it’s tough to discuss them with any generality, because “graph data model” encompasses so many different things. Indeed, just as all data structures can be mapped to relational ones, it is also the case that all data structures can be mapped to graphs.
Formally, a graph is a collection of (node, edge, node) triples. In the simplest case, the edge has no properties other than existence or maybe direction, and the triple can be reduced to a (node, node) pair, unordered or ordered as the case may be. It is common, however, for edges to encapsulate additional properties, the canonical examples of which are:
- Weight. Usually, the intuition here is that the weight is a number indicating the strength of the connection. This is generally derived from more basic data.
- Kind. The edge can encapsulate one or more descriptors indicating the kind of relationship between the nodes.
Many of the graph examples I can think of fit into four groups: Read more
Categories: Neo Technology and Neo4j, RDF and graphs, Telecommunications, Workday | 10 Comments |
Many kinds of memory-centric data management
I’m frequently asked to generalize in some way about in-memory or memory-centric data management. I can start:
- The desire for human real-time interactive response naturally leads to keeping data in RAM.
- Many databases will be ever cheaper to put into RAM over time, thanks to Moore’s Law. (Most) traditional databases will eventually wind up in RAM.
- However, there will be exceptions, mainly on the machine-generated side. Where data creation and RAM data storage are getting cheaper at similar rates … well, the overall cost of RAM storage may not significantly decline.
Getting more specific than that is hard, however, because:
- The possibilities for in-memory data storage are as numerous and varied as those for disk.
- The individual technologies and products for in-memory storage are much less mature than those for disk.
- Solid-state options such as flash just confuse things further.
Consider, for example, some of the in-memory data management ideas kicking around. Read more
Workday comments on its database architecture
In my discussion of Workday’s technology, I gave an estimate that Workday’s database, if relationally designed, would require “1000s” of tables. That estimate came from Workday, Inc. CTO Stan Swete, in a thoughtful email that made several points about Workday’s database strategy. Workday kindly gave me permission to quote it below.
Read more
Categories: Data models and architecture, Object, OLTP, Software as a Service (SaaS), Specific users, Theory and architecture, Workday | 3 Comments |
The Workday architecture — a new kind of OLTP software stack
One of my coolest company visits in some time was to SaaS (Software as a Service) vendor Workday, Inc., earlier this month. Reasons included:
- Workday has forward-thinking ideas about SaaS enterprise applications and the integration of business intelligence into same.
- Workday has highly innovative ideas in how it manages data.
- Companies founded by Dave Duffield tend to feature smart, likeable people who talk to one pleasantly and forthrightly. Workday is no exception; CTO Stan Swete and the other Workday folks present were a delight to talk with.
- I’d invited Merv Adrian to come along with me. He asked great questions, and I could gather myself a bit despite how sleep-deprived I was for the first part of that trip.
Workday kindly allowed me to post this Workday slide deck. Otherwise, I’ve split out a quick Workday, Inc. company overview into a separate post.
The biggie for me was the data and object management part. Specifically: Read more
Workday, Inc. company overview
My main post on Workday’s technology got really long, so I decided to split out a company backgrounder separately. Here goes.
Workday, Inc. was founded by Dave Duffield and Aneel Bhusri, who’d previously worked together at PeopleSoft. It is generally the case that the companies Dave starts: Read more
Categories: Pricing, Software as a Service (SaaS), Workday | 4 Comments |