Vertica Systems

Analysis of columnar data warehouse DBMS vendor Vertica Systems. Related subjects include:

November 21, 2011

Some big-vendor execution questions, and why they matter

When I drafted a list of key analytics-sector issues in honor of look-ahead season, the first item was “execution of various big vendors’ ambitious initiatives”. By “execute” I mean mainly:

Vendors mentioned here are Oracle, SAP, HP, and IBM. Anybody smaller got left out due to the length of this post. Among the bigger omissions were:

Read more

November 21, 2011

Analytic trends in 2012: Q&A

As a new year approaches, it’s the season for lists, forecasts and general look-ahead. Press interviews of that nature have already begun. And so I’m working on a trilogy of related posts, all based on an inquiry about hot analytic trends for 2012.

This post is a moderately edited form of an actual interview. Two other posts cover analytic trends to watch (planned) and analytic vendor execution challenges to watch (already up).

Read more

October 18, 2011

Vertica Community Edition

The press release announcing Vertica’s Community Edition is a bit vague. And indeed, much of what I know about Vertica Community Edition is along the lines of “This is what I think will happen, but of course it could still change.” That said, I believe:

I’m a big supporter of the Vertica Community Edition idea, for four reasons:

September 22, 2011

HP systems soundbites

It is widely rumored that there will be a leadership change at HP (Meg Whitman in, Leo Apotheker out). In connection with that, I found myself holding forth on points such as:

September 7, 2011

Vertica projections — an overview

Partially at my suggestion, Vertica has blogged a threepart series explaining the “projections” that are central to a Vertica database. This is important, because in Vertica projections play the roles that in many analytic DBMS might be filled by base tables, indexes, AND materialized views. Highlights include:

The blog posts contain a lot more than that, of course, both rah-rah and technical detail, including reminders of other Vertica advantages (compression, no logging, etc.). If you’re interested in analytic DBMS, they’re worth a look.

September 5, 2011

Data management at Zynga and LinkedIn

Mike Driscoll and his Metamarkets colleagues organized a bit of a bash Thursday night. Among the many folks I chatted with were Ken Rudin of Zynga, Sam Shah of LinkedIn, and D. J. Patil, late of LinkedIn. I now know more about analytic data management at Zynga and LinkedIn, plus some bonus stuff on LinkedIn’s People You May Know application. 🙂

It’s blindingly obvious that Zynga is one of Vertica’s petabyte-scale customers, given that Zynga sends 5 TB/day of data into Vertica, and keeps that data for about a year. (Zynga may retain even more data going forward; in particular, Zynga regrets ever having thrown out the first month of data for any game it’s tried to launch.) This is game actions, for the most part, rather than log files; true logs generally go into Splunk.

I don’t know whether the missing data is completely thrown away, or just stashed on inaccessible tapes somewhere.

I found two aspects of the Zynga story particularly interesting. First, those 5 TB/day are going straight into Vertica (from, I presume, memcached/Membase/Couchbase), as Zynga decided that sending the data to some kind of log first was more trouble than it’s worth. Second, there’s Zynga’s approach to analytic database design. Highlights of that include: Read more

August 18, 2011

HP/Autonomy sound bites

HP has announced that:

On a high level, this means:

My coverage of Autonomy isn’t exactly current, but I don’t know of anything that contradicts long-time competitor* Dave Kellogg’s skeptical view of Autonomy. Autonomy is a collection of businesses involved in the management, search, and retrieval of poly-structured data, in some cases with strong market share, but even so not necessarily with the strongest of reputations for technology or technology momentum. Autonomy started from a text search engine and a Bayesian search algorithm on top of that, which did a decent job for many customers. But if there’s been much in the way of impressive enhancement over the past 8-10 years, I’ve missed the news.

*Dave, of course, was CEO of MarkLogic.

Questions obviously arise about how the Autonomy acquisition relates to other HP businesses. My early thoughts include:  Read more

July 6, 2011

Hadoop hardware and compression

A month ago, I posted about typical Hadoop hardware. After talking today with Eric Baldeschwieler of Hortonworks, I have an update. I also learned some things from Eric and from Brian Christian of Zettaset about Hadoop compression.

First the compression part. Eric thinks 6-10X compression is common for “curated” Hadoop data — i.e., the data that actually gets used a lot. Brian used an overall figure of 6-8X, and told of a specific customer who had 6X or a little more. By way of comparison, it sounds as if the kinds of data involved are like what Vertica claimed 10-60X compression for almost three years ago.

Eric also made an excellent point about low-value machine-generated data. I was suggesting that as Moore’s Law made sensor networks ever more affordable:  Read more

July 5, 2011

Eight kinds of analytic database (Part 2)

In Part 1 of this two-part series, I outlined four variants on the traditional enterprise data warehouse/data mart dichotomy, and suggested what kinds of DBMS products you might use for each. In Part 2 I’ll cover four more kinds of analytic database — even newer, for the most part, with a use case/product short list match that is even less clear.  Read more

July 5, 2011

Eight kinds of analytic database (Part 1)

Analytic data management technology has blossomed, leading to many questions along the lines of “So which products should I use for which category of problem?” The old EDW/data mart dichotomy is hopelessly outdated for that purpose, and adding a third category for “big data” is little help.

Let’s try eight categories instead. While no categorization is ever perfect, these each have at least some degree of technical homogeneity. Figuring out which types of analytic database you have or need — and in most cases you’ll need several — is a great early step in your analytic technology planning.  Read more

← Previous PageNext Page →

Feed: DBMS (database management system), DW (data warehousing), BI (business intelligence), and analytics technology Subscribe to the Monash Research feed via RSS or email:

Login

Search our blogs and white papers

Monash Research blogs

User consulting

Building a short list? Refining your strategic plan? We can help.

Vendor advisory

We tell vendors what's happening -- and, more important, what they should do about it.

Monash Research highlights

Learn about white papers, webcasts, and blog highlights, by RSS or email.