Sybase

Analysis of Sybase and its various product lines, such as Sybase IQ. Related subjects include:

April 29, 2013

More on Actian/ParAccel/VectorWise/Versant/etc.

My quick reaction to the Actian/ParAccel deal was negative. A few challenges to my views then emerged. They didn’t really change my mind.

Amazon Redshift

Amazon did a deal with ParAccel that amounted to:

Some argue that this is great for ParAccel’s future prospects. I’m not convinced.

No doubt there are and will be Redshift users, evidently including Infor. But so far as I can tell, Redshift uses very standard SQL, so it doesn’t seed a ParAccel market in terms of developer habits. The administration/operation story is similar. So outside of general validation/bragging rights, Redshift is not a big deal for ParAccel.

OEMs and bragging rights

It’s not just Amazon and Infor; there’s also a MicroStrategy deal to OEM ParAccel — I think it’s the real ParAccel software in that case — for a particular service, MicroStrategy Wisdom. But unless I’m terribly mistaken, HP Vertica, Sybase IQ and even Infobright each have a lot more OEMs than ParAccel, just as they have a lot more customers than ParAccel overall.

This OEM success is a great validation for the idea of columnar analytic RDBMS in general, but I don’t see where it’s an advantage for ParAccel vs. the columnar leaders. Read more

April 25, 2013

Goodbye VectorWise, farewell ParAccel?

Actian, which already owns VectorWise, is also buying ParAccel. The argument for why this kills VectorWise is simple. ParAccel does most things VectorWise does, more or less as well. It also does a lot more:

One might conjecture that ParAccel is bad at highly concurrent, single-node use cases, and VectorWise is better at them — but at the link above, ParAccel bragged of supporting 5,000 concurrent connections. Besides, if one is just looking for a high-use reporting server, why not get Sybase IQ?? Anyhow, Actian hasn’t been investing enough in VectorWise to make it a major market player, and they’re unlikely to start now that they own ParAccel as well.

But I expect ParAccel to fail too. Reasons include:

Read more

March 18, 2013

DBMS development and other subjects

The cardinal rules of DBMS development

Rule 1: Developing a good DBMS requires 5-7 years and tens of millions of dollars.

That’s if things go extremely well.

Rule 2: You aren’t an exception to Rule 1. 

In particular:

DBMS with Hadoop underpinnings …

… aren’t exceptions to the cardinal rules of DBMS development. That applies to Impala (Cloudera), Stinger (Hortonworks), and Hadapt, among others. Fortunately, the relevant vendors seem to be well aware of this fact. Read more

February 5, 2013

Comments on Gartner’s 2012 Magic Quadrant for Data Warehouse Database Management Systems — evaluations

To my taste, the most glaring mis-rankings in the 2012/2013 Gartner Magic Quadrant for Data Warehouse Database Management are that it is too positive on Kognitio and too negative on Infobright. Secondarily, it is too negative on HP Vertica, and too positive on ParAccel and Actian/VectorWise. So let’s consider those vendors first.

Gartner seems confused about Kognitio’s products and history alike.

Gartner is correct, however, to note that Kognitio doesn’t sell much stuff overall.

* non-existent

In the cases of HP Vertica, Infobright, ParAccel, and Actian/VectorWise, the 2012 Gartner Magic Quadrant for Data Warehouse Database Management’s facts are fairly accurate, but I dispute Gartner’s evaluation. When it comes to Vertica: Read more

October 6, 2012

Analyzing big companies is hard

Analyzing companies of any size is hard. Analyzing large ones, however, is harder yet.

Such limitations should be borne in mind in connection with anything I write about, for example, Oracle, Microsoft, IBM, or SAP.

There are many reasons for large companies to communicate less usefully with analysts than smaller ones do. Some of the biggest are:

Read more

August 19, 2012

In-database analytics — analytic glossary draft entry

This is a draft entry for the DBMS2 analytic glossary. Please comment with any ideas you have for its improvement!

Note: Words and phrases in italics will be linked to other entries when the glossary is complete.

“In-database analytics” is a catch-all term for analytic capabilities, beyond standard SQL, running on the same machine as and under the management of an analytic DBMS. These can run in one or both of two modes:

In-database analytics may offer great performance and scalability advantages versus the alternative of extracting data and having it be processed on a separate server. This is particularly likely to be the case in MPP (Massively Parallel Processing) analytic DBMS environments.

Examples of in-database analytics include:

Other common domains for in-database analytics include sessionization, time series analysis, and relationship analytics.

Notable products offering in-database analytics include:

August 7, 2012

Notes on some basic database terminology

In a call Monday with a prominent company, I was told:

That, to put it mildly, is not accurate. So I shall try, yet again, to set the record straight.

In an industry where people often call a DBMS just a “database” — so that a database is something that manages a database! — one may wonder why I bother. Anyhow …

1. The products commonly known as Oracle, Exadata, DB2, Sybase, SQL Server, Teradata, Sybase IQ, Netezza, Vertica, Greenplum, Aster, Infobright, SAND, ParAccel, Exasol, Kognitio et al. all either are or incorporate relational database management systems, aka RDBMS or relational DBMS.

2. In principle, there can be difficulties in judging whether or not a DBMS is “relational”. In practice, those difficulties don’t arise — yet. Every significant DBMS still falls into one of two categories:

*I expect the distinction to get more confusing soon, at which point I’ll adopt terms more precise than “relational things” and “relational stuff”.

3. There are two chief kinds of relational DBMS: Read more

March 16, 2012

Juggling analytic databases

I’d like to survey a few related ideas:

Here goes. Read more

February 8, 2012

Comments on the analytic DBMS industry and Gartner’s Magic Quadrant for same

This year’s Gartner Magic Quadrant for Data Warehouse Database Management Systems is out.* I shall now comment, just as I did on the 2010, 2009, 2008, 2007, and 2006 Gartner Data Warehouse Database Management System Magic Quadrants, to varying extents. To frame the discussion, let me start by saying:

*As of February, 2012 — and surely for many months thereafter — Teradata is graciously paying for a link to the report.

Specific company comments, roughly in line with Gartner’s rough single-dimensional rank ordering, include: Read more

November 28, 2011

Terminology: Data mustering

I find myself in need of a word or phrase that means bring data together from various sources so that it’s ready to be used, where the use can be analysis or operations. The first words I thought of were “aggregation” and “collection,” but they both have other meanings in IT. Even “data marshalling” has a specific meaning different from what I want. So instead, I’ll go with data mustering.

I mean for the term “data mustering” to encompass at least three scenarios:

Let me explain what I mean by each.  Read more

← Previous PageNext Page →

Feed: DBMS (database management system), DW (data warehousing), BI (business intelligence), and analytics technology Subscribe to the Monash Research feed via RSS or email:

Login

Search our blogs and white papers

Monash Research blogs

User consulting

Building a short list? Refining your strategic plan? We can help.

Vendor advisory

We tell vendors what's happening -- and, more important, what they should do about it.

Monash Research highlights

Learn about white papers, webcasts, and blog highlights, by RSS or email.