Sybase
Analysis of Sybase and its various product lines, such as Sybase IQ. Related subjects include:
- Data warehousing
- Columnar database management systems
- (in Text Technologies) Sybase’s Answers Anywhere language-response technology
- (in Software Memories) Historical notes about Sybase
Are analytic RDBMS and data warehouse appliances obsolete?
I used to spend most of my time — blogging and consulting alike — on data warehouse appliances and analytic DBMS. Now I’m barely involved with them. The most obvious reason is that there have been drastic changes in industry structure:
- Many of the independent vendors were swooped up by acquisition.
- None of those acquisitions was a big success.
- Microsoft did little with DATAllegro.
- Netezza struggled with R&D after being bought by IBM. An IBMer recently told me that their main analytic RDBMS engine was BLU.
- I hear about Vertica more as a technology to be replaced than as a significant ongoing market player.
- Pivotal open-sourced Greenplum. I have detected few people who care.
- Ditto for Actian’s offerings.
- Teradata claimed a few large Aster accounts, but I never hear of Aster as something to compete or partner with.
- Smaller vendors fizzled too. Hadapt and Kickfire went to Teradata as more-or-less acquihires. InfiniDB folded. Etc.
- Impala and other Hadoop-based alternatives are technology options.
- Oracle, Microsoft, IBM and to some extent SAP/Sybase are still pedaling along … but I rarely talk with companies that big. 🙂
Simply reciting all that, however, begs the question of whether one should still care about analytic RDBMS at all.
My answer, in a nutshell, is:
Analytic RDBMS — whether on premises in software, in the form of data warehouse appliances, or in the cloud — are still great for hard-core business intelligence, where “hard-core” can refer to ad-hoc query complexity, reporting/dashboard concurrency, or both. But they aren’t good for much else.
Notes on indexes and index-like structures
Indexes are central to database management.
- My first-ever stock analyst report, in 1982, correctly predicted that index-based DBMS would supplant linked-list ones …
- … and to this day, if one wants to retrieve a small fraction of a database, indexes are generally the most efficient way to go.
- Recently, I’ve had numerous conversations in which indexing strategies played a central role.
Perhaps it’s time for a round-up post on indexing. 🙂
1. First, let’s review some basics. Classically:
- An index is a DBMS data structure that you probe to discover where to find the data you really want.
- Indexes make data retrieval much more selective and hence faster.
- While indexes make queries cheaper, they make writes more expensive — because when you write data, you need to update your index as well.
- Indexes also induce costs in database size and administrative efforts. (Manual index management is often the biggest hurdle for “zero-DBA” RDBMS installations.)
2. Further: Read more
Categories: Data warehousing, Database compression, GIS and geospatial, Google, MapReduce, McObject, MemSQL, MySQL, ScaleDB, solidDB, Sybase, Text, Tokutek and TokuDB | 18 Comments |
MongoDB 3.0
Old joke:
- Question: Why do policemen work in pairs?
- Answer: One to read and one to write.
A lot has happened in MongoDB technology over the past year. For starters:
- The big news in MongoDB 3.0* is the WiredTiger storage engine. The top-level claims for that are that one should “typically” expect (individual cases can of course vary greatly):
- 7-10X improvement in write performance.
- No change in read performance (which however was boosted in MongoDB 2.6).
- ~70% reduction in data size due to compression (disk only).
- ~50% reduction in index size due to compression (disk and memory both).
- MongoDB has been adding administration modules.
- A remote/cloud version came out with, if I understand correctly, MongoDB 2.6.
- An on-premise version came out with 3.0.
- They have similar features, but are expected to grow apart from each other over time. They have different names.
*Newly-released MongoDB 3.0 is what was previously going to be MongoDB 2.8. My clients at MongoDB finally decided to give a “bigger” release a new first-digit version number.
To forestall confusion, let me quickly add: Read more
Categories: Database compression, Hadoop, Humor, In-memory DBMS, MongoDB, NoSQL, Open source, Structured documents, Sybase | 9 Comments |
Thoughts and notes, Thanksgiving weekend 2014
I’m taking a few weeks defocused from work, as a kind of grandpaternity leave. That said, the venue for my Dances of Infant Calming is a small-but-nice apartment in San Francisco, so a certain amount of thinking about tech industries is inevitable. I even found time last Tuesday to meet or speak with my clients at WibiData, MemSQL, Cloudera, Citus Data, and MongoDB. And thus:
1. I’ve been sloppy in my terminology around “geo-distribution”, in that I don’t always make it easy to distinguish between:
- Storing different parts of a database in different geographies, often for reasons of data privacy regulatory compliance.
- Replicating an entire database into different geographies, often for reasons of latency and/or availability/ disaster recovery,
The latter case can be subdivided further depending on whether multiple copies of the data can accept first writes (aka active-active, multi-master, or multi-active), or whether there’s a clear single master for each part of the database.
What made me think of this was a phone call with MongoDB in which I learned that the limit on number of replicas had been raised from 12 to 50, to support the full-replication/latency-reduction use case.
2. Three years ago I posted about agile (predictive) analytics. One of the points was:
… if you change your offers, prices, ad placement, ad text, ad appearance, call center scripts, or anything else, you immediately gain new information that isn’t well-reflected in your previous models.
Subsequently I’ve been hearing more about predictive experimentation such as bandit testing. WibiData, whose views are influenced by a couple of Very Famous Department Store clients (one of which is Macy’s), thinks experimentation is quite important. And it could be argued that experimentation is one of the simplest and most direct ways to increase the value of your data.
3. I’d further say that a number of developments, trends or possibilities I’m seeing are or could be connected. These include agile and experimental predictive analytics in general, as noted in the previous point, along with: Read more
21st Century DBMS success and failure
As part of my series on the keys to and likelihood of success, I outlined some examples from the DBMS industry. The list turned out too long for a single post, so I split it up by millennia. The part on 20th Century DBMS success and failure went up Friday; in this one I’ll cover more recent events, organized in line with the original overview post. Categories addressed will include analytic RDBMS (including data warehouse appliances), NoSQL/non-SQL short-request DBMS, MySQL, PostgreSQL, NewSQL and Hadoop.
DBMS rarely have trouble with the criterion “Is there an identifiable buying process?” If an enterprise is doing application development projects, a DBMS is generally chosen for each one. And so the organization will generally have a process in place for buying DBMS, or accepting them for free. Central IT, departments, and — at least in the case of free open source stuff — developers all commonly have the capacity for DBMS acquisition.
In particular, at many enterprises either departments have the ability to buy their own analytic technology, or else IT will willingly buy and administer things for a single department. This dynamic fueled much of the early rise of analytic RDBMS.
Buyer inertia is a greater concern.
- A significant minority of enterprises are highly committed to their enterprise DBMS standards.
- Another significant minority aren’t quite as committed, but set pretty high bars for new DBMS products to cross nonetheless.
- FUD (Fear, Uncertainty and Doubt) about new DBMS is often justifiable, about stability and consistent performance alike.
A particularly complex version of this dynamic has played out in the market for analytic RDBMS/appliances.
- First the newer products (from Netezza onwards) were sold to organizations who knew they wanted great performance or price/performance.
- Then it became more about selling “business value” to organizations who needed more convincing about the benefits of great price/performance.
- Then the behemoth vendors became more competitive, as Teradata introduced lower-price models, Oracle introduced Exadata, Sybase got more aggressive with Sybase IQ, IBM bought Netezza, EMC bought Greenplum, HP bought Vertica and so on. It is now hard for a non-behemoth analytic RDBMS vendor to make headway at large enterprise accounts.
- Meanwhile, Hadoop has emerged as serious competitor for at least some analytic data management, especially but not only at internet companies.
Otherwise I’d say: Read more
Optimism, pessimism, and fatalism — fault-tolerance, Part 2
The pessimist thinks the glass is half-empty.
The optimist thinks the glass is half-full.
The engineer thinks the glass was poorly designed.
Most of what I wrote in Part 1 of this post was already true 15 years ago. But much gets added in the modern era, considering that:
- Clusters will have node hiccups more often than single nodes will. (Duh.)
- Networks are relatively slow even when uncongested, and furthermore congest unpredictably.
- In many applications, it’s OK to sacrifice even basic-seeming database functionality.
And so there’s been innovation in numerous cluster-related subjects, two of which are:
- Distributed query and update. When a database is distributed among many modes, how does a request access multiple nodes at once?
- Fault-tolerance in long-running jobs.When a job is expected to run on many nodes for a long time, how can it deal with failures or slowdowns, other than through the distressing alternatives:
- Start over from the beginning?
- Keep (a lot of) the whole cluster’s resources tied up, waiting for things to be set right?
Distributed database consistency
When a distributed database lives up to the same consistency standards as a single-node one, distributed query is straightforward. Performance may be an issue, however, which is why we have seen a lot of:
- Analytic RDBMS innovation.
- Short-request applications designed to avoid distributed joins.
- Short-request clustered RDBMS that don’t allow fully-general distributed joins in the first place.
But in workloads with low-latency writes, living up to those standards is hard. The 1980s approach to distributed writing was two-phase commit (2PC), which may be summarized as: Read more
Categories: Clustering, CouchDB, Data warehousing, Databricks, Spark and BDAS, Facebook, Hadoop, MapReduce, Sybase, Theory and architecture, VoltDB and H-Store | 1 Comment |
Optimism, pessimism and fatalism — fault-tolerance, Part 1
Writing data management or analysis software is hard. This post and its sequel are about some of the reasons why.
When systems work as intended, writing and reading data is easy. Much of what’s hard about data management is dealing with the possibility — really the inevitability — of failure. So it might be interesting to survey some of the many ways that considerations of failure come into play. Some have been major parts of IT for decades; others, if not new, are at least newly popular in this cluster-oriented, RAM-crazy era. In this post I’ll focus on topics that apply to single-node systems; in the sequel I’ll emphasize topics that are clustering-specific.
Major areas of failure-aware design — and these overlap greatly — include:
- Backup and restore. In its simplest form, this is very basic stuff. That said — any decent database management system should let backups be made without blocking ongoing database operation, with the least performance impact possible.
- Logging, rollback and replay. Logs are essential to DBMS. And since they’re both ubiquitous and high-performance, logs are being used in ever more ways.
- Locking, latching, transactions and consistency. Database consistency used to be enforced in stern and pessimistic ways. That’s changing, big-time, in large part because of the requirements of …
- … distributed database operations. Increasingly, modern distributed database systems are taking the approach of getting work done first, then cleaning up messes when they occur.
- Redundancy and replication. Parallel computing creates both a need and an opportunity to maintain multiple replicas of data at once, in very different ways than the redundancy and replication of the past.
- Fault-tolerant execution. When one node is inoperative, inaccessible, overloaded or just slow, you may not want a whole long multi-node job to start over. A variety of techniques address this need.
Long-standing basics
In a single-server, disk-based configuration, techniques for database fault-tolerance start: Read more
Categories: In-memory DBMS, Sybase, Theory and architecture | 5 Comments |
RDBMS and their bundle-mates
Relational DBMS used to be fairly straightforward product suites, which boiled down to:
- A big SQL interpreter.
- A bunch of administrative and operational tools.
- Some very optional add-ons, often including an application development tool.
Now, however, most RDBMS are sold as part of something bigger.
- Oracle has hugely thickened its stack, as part of an Innovator’s Solution strategy — hardware, middleware, applications, business intelligence, and more.
- IBM has moved aggressively to a bundled “appliance” strategy. Even before that, IBM DB2 long sold much better to committed IBM accounts than as a software-only offering.
- Microsoft SQL Server is part of a stack, starting with the Windows operating system.
- Sybase was an exception to this rule, with thin(ner) stacks for both Adaptive Server Enterprise and Sybase IQ. But Sybase is now owned by SAP, and increasingly integrated as a business with …
- … SAP HANA, which is closely associated with SAP’s applications.
- Teradata has always been a hardware/software vendor. The most successful of its analytic DBMS rivals, in some order, are:
- Netezza, a pure appliance vendor, now part of IBM.
- Greenplum, an appliance-mainly vendor for most (not all) of its existence, and in particular now as a part of EMC Pivotal.
- Vertica, more of a software-only vendor than the others, but now owned by and increasingly mainstreamed into hardware vendor HP.
- MySQL’s glory years were as part of the “LAMP” stack.
- Various thin-stack RDBMS that once were or could have been important market players … aren’t. Examples include Progress OpenEdge, IBM Informix, and the various strays adopted by Actian.
Comments on the 2013 Gartner Magic Quadrant for Operational Database Management Systems
The 2013 Gartner Magic Quadrant for Operational Database Management Systems is out. “Operational” seems to be Gartner’s term for what I call short-request, in each case the point being that OLTP (OnLine Transaction Processing) is a dubious term when systems omit strict consistency, and when even strictly consistent systems may lack full transactional semantics. As is usually the case with Gartner Magic Quadrants:
- I admire the raw research.
- The opinions contained are generally reasonable (especially since Merv Adrian joined the Gartner team).
- Some of the details are questionable.
- There’s generally an excessive focus on Gartner’s perception of vendors’ business skills, and on vendors’ willingness to parrot all the buzzphrases Gartner wants to hear.
- The trends Gartner highlights are similar to those I see, although our emphasis may be different, and they may leave some important ones out. (Big omission — support for lightweight analytics integrated into operational applications, one of the more genuine forms of real-time analytics.)
Anyhow: Read more
Things I keep needing to say
Some subjects just keep coming up. And so I keep saying things like:
Most generalizations about “Big Data” are false. “Big Data” is a horrific catch-all term, with many different meanings.
Most generalizations about Hadoop are false. Reasons include:
- Hadoop is a collection of disparate things, most particularly data storage and application execution systems.
- The transition from Hadoop 1 to Hadoop 2 will be drastic.
- For key aspects of Hadoop — especially file format and execution engine — there are or will be widely varied options.
Hadoop won’t soon replace relational data warehouses, if indeed it ever does. SQL-on-Hadoop is still very immature. And you can’t replace data warehouses unless you have the power of SQL.
Note: SQL isn’t the only way to provide “the power of SQL”, but alternative approaches are just as immature.
Most generalizations about NoSQL are false. Different NoSQL products are … different. It’s not even accurate to say that all NoSQL systems lack SQL interfaces. (For example, SQL-on-Hadoop often includes SQL-on-HBase.)