Introduction to Cloudera Kudu
This is part of a three-post series on Kudu, a new data storage system from Cloudera.
- Part 1 (this post) is an overview of Kudu technology.
- Part 2 is a lengthy dive into how Kudu writes and reads data.
- Part 3 is a brief speculation as to Kudu’s eventual market significance.
Cloudera is introducing a new open source project, Kudu,* which from Cloudera’s standpoint is meant to eventually become the single best underpinning for analytics on the Hadoop stack. I’ve spent multiple hours discussing Kudu with Cloudera, mainly with Todd Lipcon. Any errors are of course entirely mine.
*Like the impala, the kudu is a kind of antelope. I knew that, because I enjoy word games. What I didn’t know — and which is germane to the naming choice — is that the kudu has stripes. 🙂
For starters:
- Kudu is an alternative to HDFS (Hadoop Distributed File System), or to HBase.
- Kudu is meant to be the underpinning for Impala, Spark and other analytic frameworks or engines.
- Kudu is not meant for OLTP (OnLine Transaction Processing), at least in any foreseeable release. For example:
- Kudu doesn’t support multi-row transactions.
- There are no active efforts to front-end Kudu with an engine that is fast at single-row queries.
- Kudu is rather columnar, except for transitory in-memory stores.
- Kudu’s core design points are that it should:
- Accept data very quickly.
- Immediately make that data available for analytics.
- More specifically, Kudu is meant to accept, along with slower forms of input:
- Lots of fast random writes, e.g. of web interactions.
- Streams, viewed as a succession of inserts.
- Updates and inserts alike.
- The core “real-time” use cases for which Kudu is designed are, unsurprisingly:
- Low-latency business intelligence.
- Predictive model scoring.
- Kudu is designed to work fine with spinning disk, and indeed has been tested to date mainly on disk-only nodes. Even so, Kudu’s architecture is optimized for the assumption that there will be at least some flash on the node.
- Kudu is designed primarily to support relational/SQL processing. However, Kudu also has a nested-data roadmap, which of course starts with supporting the analogous capabilities in Impala.
Rocana’s world
For starters:
- My client Rocana is the renamed ScalingData, where Rocana is meant to signify ROot Cause ANAlysis.
- Rocana was founded by Omer Trajman, who I’ve referenced numerous times in the past, and who I gather is a former boss of …
- … cofounder Eric Sammer.
- Rocana recently told me it had 35 people.
- Rocana has a very small number of quite large customers.
Rocana portrays itself as offering next-generation IT operations monitoring software. As you might expect, this has two main use cases:
- Actual operations — figuring out exactly what isn’t working, ASAP.
- Security.
Rocana’s differentiation claims boil down to fast and accurate anomaly detection on large amounts of log data, including but not limited to:
- The sort of network data you’d generally think of — “everything” except packet-inspection stuff.
- Firewall output.
- Database server logs.
- Point-of-sale data (at a retailer).
- “Application data”, whatever that means. (Edit: See Tom Yates’ clarifying comment below.)
DataStax and Cassandra update
MongoDB isn’t the only company I reached out to recently for an update. Another is DataStax. I chatted mainly with Patrick McFadin, somebody with whom I’ve had strong consulting relationships at a user and vendor both. But Rachel Pedreschi contributed the marvelous phrase “twinkling dashboard”.
It seems fair to say that in most cases:
- Cassandra is adopted for operational applications, specifically ones with requirements for extreme uptime and/or extreme write speed. (Of course, it should also be the case that NoSQL data structures are a good fit.)
- Spark, including SparkSQL, and Solr are seen primarily as ways to navigate or analyze the resulting data.
Those generalities, in my opinion, make good technical sense. Even so, there are some edge cases or counterexamples, such as:
- DataStax trumpets British Gas‘ plans collecting a lot of sensor data and immediately offering it up for analysis.*
- Safeway uses Cassandra for a mobile part of its loyalty program, scoring customers and pushing coupons at them.
- A large title insurance company uses Cassandra-plus-Solr to manage a whole lot of documents.
*And so a gas company is doing lightweight analysis on boiler temperatures, which it regards as hot data. 🙂
While most of the specifics are different, I’d say similar things about MongoDB, Cassandra, or any other NoSQL DBMS that comes to mind: Read more
MongoDB update
One pleasure in talking with my clients at MongoDB is that few things are NDA. So let’s start with some numbers:
- >2,000 named customers, the vast majority of which are unique organizations who do business with MongoDB directly.
- ~75,000 users of MongoDB Cloud Manager.
- Estimated ~1/4 million production users of MongoDB total.
Also >530 staff, and I think that number is a little out of date.
MongoDB lacks many capabilities RDBMS users take for granted. MongoDB 3.2, which I gather is slated for early November, narrows that gap, but only by a little. Features include:
- Some JOIN capabilities.
- Specifically, these are left outer joins, so they’re for lookup but not for filtering.
- JOINs are not restricted to specific shards of data …
- … but do benefit from data co-location when it occurs.
- A BI connector. Think of this as a MongoDB-to- SQL translator. Using this does require somebody to go in and map JSON schemas and relational tables to each other. Once that’s done, the flow is:
- Basic SQL comes in.
- Filters and GroupBys are pushed down to MongoDB. A result set … well, it results. 🙂
- The result set is formatted into a table and returned to the system — for example a business intelligence tool — that sent the SQL.
- Database-side document validation, in the form of field-specific rules that combine into a single expression against which to check a document.
- This is fairly simple stuff — no dependencies among fields in the same document, let alone foreign key relationships.
- MongoDB argues, persuasively, that this simplicity makes it unlikely to recreate the spaghetti code maintenance nightmare that was 1990s stored procedures.
- MongoDB concedes that, for performance, it will ordinarily be a good idea to still do your validation on the client side.
- MongoDB points out that enforcement can be either strict (throw errors) or relaxed (just note invalid documents to a log). The latter option is what makes it possible to install this feature without breaking your running system.
There’s also a closed-source database introspection tool coming, currently codenamed MongoDB Scout. Read more
Categories: Business intelligence, EAI, EII, ETL, ELT, ETLT, Market share and customer counts, MongoDB, NoSQL, Open source, Structured documents, Text | 6 Comments |
Multi-model database managers
I’d say:
- Multi-model database management has been around for decades. Marketers who say otherwise are being ridiculous.
- Thus, “multi-model”-centric marketing is the last refuge of the incompetent. Vendors who say “We have a great DBMS, and by the way it’s multi-model (now/too)” are being smart. Vendors who say “You need a multi-model DBMS, and that’s the reason you should buy from us” are being pathetic.
- Multi-logical-model data management and multi-latency-assumption data management are greatly intertwined.
Before supporting my claims directly, let me note that this is one of those posts that grew out of a Twitter conversation. The first round went:
Merv Adrian: 2 kinds of multimodel from DBMS vendors: multi-model DBMSs and multimodel portfolios. The latter create more complexity, not less.
Me: “Owned by the same vendor” does not imply “well integrated”. Indeed, not a single example is coming to mind.
Merv: We are clearly in violent agreement on that one.
Around the same time I suggested that Intersystems Cache’ was the last significant object-oriented DBMS, only to get the pushback that they were “multi-model” as well. That led to some reasonable-sounding justification — although the buzzwords of course aren’t from me — namely: Read more
Categories: Data models and architecture, Database diversity, Databricks, Spark and BDAS, Intersystems and Cache', MOLAP, Object, Streaming and complex event processing (CEP) | 3 Comments |
Data messes
A lot of what I hear and talk about boils down to “data is a mess”. Below is a very partial list of examples.
To a first approximation, one would expect operational data to be rather clean. After all, it drives and/or records business transactions. So if something goes awry, the result can be lost money, disappointed customers, or worse, and those are outcomes to be strenuously avoided. Up to a point, that’s indeed true, at least at businesses large enough to be properly automated. (Unlike, for example — 🙂 — mine.)
Even so, operational data has some canonical problems. First, it could be inaccurate; somebody can just misspell or otherwise botch an entry. Further, there are multiple ways data can be unreachable, typically because it’s:
- Inconsistent, in which case humans might not know how to look it up and database JOINs might fail.
- Unintegrated, in which case one application might not be able to use data that another happily maintains. (This is the classic data silo problem.)
Inconsistency can take multiple forms, including: Read more
Zoomdata and the Vs
Let’s start with some terminology biases:
- I dislike the term “big data” but like the Vs that define it — Volume, Velocity, Variety and Variability.
- Though I think it’s silly, I understand why BI innovators flee from the term “business intelligence” (they’re afraid of not sounding new).
So when my clients at Zoomdata told me that they’re in the business of providing “the fastest visual analytics for big data”, I understood their choice, but rolled my eyes anyway. And then I immediately started to check how their strategy actually plays against the “big data” Vs.
It turns out that:
- Zoomdata does its processing server-side, which allows for load-balancing and scale-out. Scale-out and claims of great query speed are relevant when data is of high volume.
- Zoomdata depends heavily on Spark.
- Zoomdata’s UI assumes data can be a mix of historical and streaming, and that if looking at streaming data you might want to also check history. This addresses velocity.
- Zoomdata assumes data can be in a variety of data stores, including:
- Relational (operational RDBMS, analytic RDBMS, or SQL-on-Hadoop).
- Files (generic HDFS — Hadoop Distributed File System or S3).*
- NoSQL (MongoDB and HBase were mentioned).
- Search (Elasticsearch was mentioned among others).
- Zoomdata also tries to detect data variability.
- Zoomdata is OEM/embedding-friendly.
*The HDFS/S3 aspect seems to be a major part of Zoomdata’s current story.
Core aspects of Zoomdata’s technical strategy include: Read more
Hadoop generalities
Occasionally I talk with an astute reporter — there are still a few left 🙂 — and get led toward angles I hadn’t considered before, or at least hadn’t written up. A blog post may then ensue. This is one such post.
There is a group of questions going around that includes:
- Is Hadoop overhyped?
- Has Hadoop adoption stalled?
- Is Hadoop adoption being delayed by skills shortages?
- What is Hadoop really good for anyway?
- Which adoption curves for previous technologies are the best analogies for Hadoop?
To a first approximation, my responses are: Read more
Teradata will support Presto
At the highest level:
- Presto is, roughly speaking, Facebook’s replacement for Hive, at least for queries that are supposed to run at interactive speeds.
- Teradata is announcing support for Presto with a classic open source pricing model.
- Presto will also become, roughly speaking, Teradata’s replacement for Hive.
- Teradata’s Presto efforts are being conducted by the former Hadapt.
Now let’s make that all a little more precise.
Regarding Presto (and I got most of this from Teradata)::
- To a first approximation, Presto is just another way to write SQL queries against HDFS (Hadoop Distributed File System). However …
- … Presto queries other data stores too, such as various kinds of RDBMS, and federates query results.
- Facebook at various points in time created both Hive and now Presto.
- Facebook started the Presto project in 2012 and now has 10 engineers on it.
- Teradata has named 16 engineers – all from Hadapt – who will be contributing to Presto.
- Known serious users of Presto include Facebook, Netflix, Groupon and Airbnb. Airbnb likes Presto well enough to have 1/3 of its employees using it, via an Airbnb-developed tool called Airpal.
- Facebook is known to have a cluster cited at 300 petabytes and 4000 users where Presto is presumed to be a principal part of the workload.
Daniel Abadi said that Presto satisfies what he sees as some core architectural requirements for a modern parallel analytic RDBMS project: Read more
IT-centric notes on the future of health care
It’s difficult to project the rate of IT change in health care, because:
- Health care is suffused with technology — IT, medical device and biotech alike — and hence has the potential for rapid change. However, it is also the case that …
- … health care is heavily bureaucratic, political and regulated.
Timing aside, it is clear that health care change will be drastic. The IT part of that starts with vastly comprehensive electronic health records, which will be accessible (in part or whole as the case may be) by patients, care givers, care payers and researchers alike. I expect elements of such records to include:
- The human-generated part of what’s in ordinary paper health records today, but across a patient’s entire lifetime. This of course includes notes created by doctors and other care-givers.
- Large amounts of machine-generated data, including:
- The results of clinical tests. Continued innovation can be expected in testing, for reasons that include:
- Most tests exploit electronic technology. Progress in electronics is intense.
- Biomedical research is itself intense.
- In particular, most research technologies (for example gene sequencing) can be made cheap enough over time to be affordable clinically.
- The output of consumer health-monitoring devices — e.g. Fitbit and its successors. The buzzword here is “quantified self”, but what it boils down to is that every moment of our lives will be measured and recorded.
- The results of clinical tests. Continued innovation can be expected in testing, for reasons that include:
These vastly greater amounts of data cited above will allow for greatly changed analytics.
Read more