Clustrix 4.0 and other Clustrix stuff
It feels like time to write about Clustrix, which I last covered in detail in May, 2010, and which is releasing Clustrix 4.0 today. Clustrix and Clustrix 4.0 basics include:
- Clustrix makes a short-request processing appliance.
- As you might guess from the name, Clustrix is clustered — peer-to-peer, with no head node.
- The Clustrix appliance uses flash/solid-state storage.
- Traditionally, Clustrix has run a MySQL-compatible DBMS.
- Clustrix 4.0 introduces JSON support. More on that below.
- Clustrix 4.0 introduces a bunch of administrative features, and parallel backup.
- Also in today’s announcement is a Rackspace partnership to offer Clustrix remotely, at monthly pricing.
- Clustrix has been shipping product for about 4 years.
- Clustrix has 20 customers in production, running >125 Clustrix nodes total.
- Clustrix has 60 people.
- List price for a (smallest size) Clustrix system is $150K for 3 nodes. Highest-end maintenance costs 15%.
- There’s also a $100K version meant for high availability/disaster recovery. Over half of Clustrix’s customers use off-site disaster recovery.
- Clustrix is raising a C round. Part of it has already been raised from insiders, as a kind of bridge.
The biggest Clustrix installation seems to be 20 nodes or so. Others seem to have 10+. I presume those disaster recovery customers have 6 or more nodes each. I’m not quite sure how the arithmetic on that all works; perhaps the 125ish count of nodes is a bit low.
Clustrix technical notes include: Read more
Categories: Cloud computing, Clustering, Clustrix, Database compression, Market share and customer counts, MySQL, OLTP, Pricing, Structured documents | 4 Comments |
Why I recommend avoiding Kognitio
Since my recent post about Kognitio, things have gotten worse. The company is insistently pushing the marketing message that Kognitio has always been an in-memory product, and at one point went so far as to publicly pretend that I had agreed.
I do not agree. Yes, it’s fair to say — as I did in 2008 — that Kognitio is very RAM-centric, but that’s not at all the same thing. In particular:
- I did due diligence for Warburg Pincus’ original investment in Kognitio in the 1990s (it was then called White Cross). I have no memory of an in-memory positioning, nor of discussing same with anybody.
- I checked my notes from a 2006 briefing, which included Kognitio CTO Roger Gaskell. There was no claim that Kognitio was an in-memory product.
- Indeed, as I also posted in 2008, Kognitio keeps indexes on disk. If you use indexes on disk, you’re not an in-memory product.
The truth is that Kognitio offers a disk-based DBMS that has long been worked on by a small team. I believe that the team really has put considerable effort into how Kognitio uses RAM. But there’s no basis to give Kognitio credit for being “really” in-memory vs. a variety of other analytic RDBMS alternatives. And a row-based product that doesn’t currently offer compression is at a large disadvantage versus, say, columnar products that already do.*
*Columnar systems don’t clobber row-based ones in-memory as extremely as they do in some disk-based use cases. But even in-memory it’s good not to have to move around data that isn’t relevant to your query.
Until Kognitio gets at least somewhat more honest in its marketing, I recommend avoiding Kognitio like the plague. It’s simply not a big enough company to buy from unless you have some level of trust in the management team.
Categories: Columnar database management, Database compression, In-memory DBMS, Kognitio, Memory-centric data management | 1 Comment |
Disk, flash, and RAM
Three months ago, I pointed out that it is hard to generalize about memory-centric database management, because there are so many different kinds. That said, there are some basic points that I’d like to record as background for any future discussion of the subject, focusing on differences between disk and RAM. And while I’m at it, I’ll throw in a few comments about flash memory as well.
This post would probably be better if I had actual numbers for the speeds of various kinds of silicon operations, but I’ll do what I can without them.
For most purposes, database speed is a function of a few kinds of number:
- CPU cycles consumed.
- I/O throughput.
- I/O wait time.
- Network throughput.
- Network wait time.
The amount of storage used is also important, both directly — storage hardware costs money — and because if you save storage via compression, you may get corresponding benefits in I/O. Power consumption and similar costs are usually tied to hardware efficiency; the less gear you use, the less floor space and cooling you may be able to get away with.
When databases move to RAM from spinning disk, major consequences include: Read more
Categories: Database compression, Memory-centric data management, Solid-state memory, solidDB | 6 Comments |
Approximate query results
In theory:
- A database query is a predicate.
- A DBMS matches the data it manages against the predicate and send back those records for which the predicate is true.
And so it would seem that query results always have to be exact. Even so, there are at least four different practical scenarios in which query results can reasonably be regarded as approximate, each associated with query languages that can supersede standard set-theoretic SQL.
Actually, there’s a fifth, and it’s a huge one — some fraction of your data is just plain wrong. But that’s not what this post is about.
First, some queries don’t have binary results, even in principle. Notably, text queries are answered via relevancy rankings, which fit badly into the relational model.
Second — and this can be combined with the first — you might want to generalize the query to look for partial matches. For example, Yarcdata suggested to me a scenario in which:
- You do a SPARQL query.
- You modify the query to accept results higher up in the taxonomy. (Which is likely to be possible, because where there’s SPARQL, there’s apt to be a taxonomy as well.) For example, if you really want to query on two people living in the house, you might extend the query to cover two people connected by any kind of address or building.
Similarly, if you’re looking for geographic proximity, it’s common to extend the allowed radius to fish for more results. Or one can walk up the hierarchy in a dimensional model.
Third, sometimes you just don’t have the data for any kind of precise answer at all. One adaptation I’ve mentioned before is to interpolate time series with synthetic data, and send back “precise” results based on that. In the same post I mentioned the Vertica “range join”, wherein users deliberately throw away part of their data — only storing the range it was in — and then join accordingly.
As Donald Rumsfeld might have said — and would have done well to reflect upon — you go into decision-making with the data you have, not the data you wish you had.
Finally, sometimes there’s a precise answer in principle, but for performance reasons you accept an approximate one, at least to start with. Numerous companies have told me stories around this, including:
- Infobright, whose “Rough Query” gives fast approximate results to a broad range of queries.
- Metamarkets, which does fast cardinality estimates via HyperLogLog.
- Aster Data, which was the first company to point out to me that median, decile, quintile, and so on calculations are a lot faster in a shared-nothing setting if you’re willing to settle for approximate results.
The latter two categories led me to ask vendors how customers actually make use of their exotic SQL capabilities. Answers boiled down to:
- (Always) Well, there’s a lot of custom coding.
- (Sometimes) We’re working with partner BI vendors to make direct use of the capabilities, but that’s not done yet, so it’s too early to talk about any details.
Perhaps the answers will never get much better; it’s tough to get packaged software vendors to support vendor-specific SQL, unless the vendor is Oracle. Even so, we’re seeing ever more ways in which conventional SQL DBMS are being superseded by data management and analytic alternatives.
Categories: Aster Data, Business intelligence, Data models and architecture, Data warehousing, Database compression, Infobright, Text, Vertica Systems, Yarcdata and Cray | 3 Comments |
How important is BI flexibility?
How flexible does business intelligence technology need to be? Should it allow fully flexible ad-hoc data analysis, or does that overwhelm users? Are they perhaps happier with simpler, more prescriptive analytic paths? My answer is a resounding “It depends”.
On the one hand, it’s clear that some users really care about business intelligence flexibility. They don’t want the “right” dimensional hierarchy, carefully worked out in advance. They don’t even want fixed drilldown paths smartly calculated on the fly, ala’ Endeca (which, after all, ultimately didn’t succeed). Rather, they want to be able to truly choose aggregations and roll-ups for themselves.
Supporting this view is the rise of in-memory business intelligence. For example:
- SAP HANA is selling in impressive quantities.
- Further, HANA and alternatives are generating a lot of buzz. For example:
- Multiple clients have asked me for help positioning their products against HANA and Exalytics.
- Kognitio’s pretense to be HANA-like is getting them some sales too.
- QlikView has had considerable success.
But why would anybody pay up for the speed of in-memory BI? Analytic RDBMS offer blazing speed for broad ranges of queries. Parameterized reports let you do drilldowns in memory. So only if you need great flexibility do you need to keep a whole analytic data set permanently in RAM.
Categories: Business intelligence, Market share and customer counts, Memory-centric data management, PivotLink, Teradata | Leave a Comment |
Database diversity revisited
From time to time, I try to step back and build a little taxonomy for the variety in database technology. One effort was 4 1/2 years ago, in a pre-planned exchange with Mike Stonebraker (his side, alas, has since been taken down). A year ago I spelled out eight kinds of analytic database.
The angle I’ll take this time is to say that every sufficiently large enterprise needs to be cognizant of at least 7 kinds of database challenge. General notes on that include:
- I’m using the weasel words “database challenge” to evade questions as to what is or isn’t exactly a DBMS.
- One “challenge” can call for multiple products and technologies even within a single enterprise, let alone at different ones. For example, in this post the “eight kinds of analytic database” are reduced to just a single category.
- Even so, one product or technology may be well-suited to address a couple different kinds of challenges.
The Big Seven database challenges that almost any enterprise faces are: Read more
Introduction to Neo Technology and Neo4j
I’ve been talking some with the Neo Technology/Neo4j guys, including Emil Eifrem (CEO/cofounder), Johan Svensson (CTO/cofounder), and Philip Rathle (Senior Director of Products). Basics include:
- Neo Technology came up with Neo4j, open sourced it, and is building a company around the open source core product in the usual way.
- Neo4j is a graph DBMS.
- Neo4j is unlike some other graph DBMS in that:
- Neo4j is designed for OLTP (OnLine Transaction Processing), or at least as a general-purpose DBMS, rather than being focused on investigative analytics.
- To every node or edge managed by Neo4j you can associate an arbitrary collection of (name,value) pairs — i.e., what might be called a document.
Numbers and historical facts include:
- > 50 paying Neo4j customers.
- Estimated 1000s of production Neo4j users of open source version.*
- Estimated 1/3 of paying customers and free users using Neo4j as a “system of record”.
- >30,000 downloads/month, in some sense of “download”.
- 35 people in 6 countries, vs. 25 last December.
- $13 million in VC, most of it last October.
- Started in 2000 as the underpinnings for a content management system.
- A version of the technology in production in 2003.
- Neo4j first open-sourced in 2007.
- Big-name customers including Cisco, Adobe, and Deutsche Telekom.
- Pricing of either $6,000 or $24,000 per JVM per year for two different commercial versions.
Categories: Market share and customer counts, Neo Technology and Neo4j, Open source, Pricing, RDF and graphs, Structured documents, Telecommunications | 11 Comments |
Introduction to Yarcdata
Cray’s strategy these days seems to be:
- Move forward with the classic supercomputer business.
- Diversify into related areas.
At the moment, the main diversifications are:
- Boxes that are like supercomputers, but at a lower price point.
- Storage.
- “(Big) data”.
The last of the three is what Cray subsidiary Yarcdata is all about. Read more
Catching up with Cray
Cray is a legendary name in supercomputing hardware. Cray CTO Bill Blake (Netezza’s early-rise VP Development) seem to be there in part because of Cray’s name and history. I’m now consulting to Cray largely because of Bill Blake, specifically to Cray subsidiary Yarcdata. Along the way, I’ve picked up enough about Cray in general — largely from Bill and from Cray president Pete Ungaro — to perhaps be worth splitting out as a separate post.
Cray business highlights include:
- After a meandering and financially disappointing journey, Cray is again a stand-alone public company.
- Cray is a computer systems company.
- Cray makes a large fraction of its revenue from selling and supporting a small number of supercomputers, largely to scientific, technical, and government customers.
- Even so, Cray sells systems at a broad range of price points. Storage products are in the mix as well.
I haven’t sorted through all the details in Cray’s SEC filings, but huge government contracts play a big role, as do the associated revenue recognition delays.
At the highest level, Cray’s technical story looks like: Read more
Schooner got acquired by SanDisk
SanDisk has acquired my client Schooner Information Technology. Notes on that include:
- Schooner used to be a flash-based appliance company.
- Then Schooner pivoted to be a database software company with strong flash expertise.
- Then Schooner pivoted further to emphasize general modern OLTP (OnLine Transaction Processing) clustered goodness.
- SanDisk makes flash memory. That’s the fit.
- Specifically, Schooner is being put in the division that grew out of the acquisition of Pliant, which makes solid-state disks for database applications, and gets rave reviews from Teradata.
- Schooner had a few dozen customers, but not a lot of evident traction. Hence, I would imagine, the acquisition.
That’s about all I have at this time.