Real-time confusion
I recently proposed a 2×2 matrix of BI use cases:
- Is there an operational business process involved?
- Is there a focus on root cause analysis?
Let me now introduce another 2×2 matrix of analytic scenarios:
- Is there a compelling need for super-fresh data?
- Who’s consuming the results — humans or machines?
My point is that there are at least three different cool things people might think about when they want their analytics to be very fast:
- Fast investigative analytics — e.g., business intelligence with great query response.
- Computations on very fresh data, presented to humans — e.g. “heartbeat” graphics monitoring a network.
- Computations on very fresh data, presented back to a machine — e.g., a recommendation engine that includes makes good use of data about a user’s last few seconds of actions.
There’s also one slightly boring one that however drives a lot of important applications: Read more
Categories: Business intelligence, Games and virtual worlds, Log analysis, Predictive modeling and advanced analytics, Splunk, Streaming and complex event processing (CEP), WibiData | 5 Comments |
More on Cloudera Impala
What I wrote before about Cloudera Impala was quite incomplete. After a followup call, I now feel I have a better handle on the whole thing.
First, some basics:
- Impala is open source code, developed to date entirely by Cloudera people, which adds analytic DBMS capabilities to Hadoop as an alternative to Hive.
- Impala is in public beta, and is targeted for general availability Q1 2013 or so.
- Cloudera plans to get paid for Impala by providing support, and by offering Impala management through its proprietary Cloudera Manager.
- Impala has been under development for about 2 years. A team of 7 or so developers has been mainly in place for a over a year. Furthermore, …
- … notwithstanding that it’s best viewed as a Hive alternative, Impala actually reuses a lot of Hive.
The general technical idea of Impala is:
- It’s an additional daemon that runs on each of your Hadoop nodes.
- Thus, Impala is not subject to Hadoop MapReduce’s latency in starting up Java processes or in storing intermediate result sets to disk.
- Impala operates as a distributed parallel analytic DBMS.*
- Impala works with a variety of Hadoop storage options, each with its own implications for latency or performance.
Categories: Cloudera, Data models and architecture, Data warehousing, Hadoop, HBase, MapReduce, Open source, Predictive modeling and advanced analytics, SQL/Hadoop integration | 12 Comments |
Notes and comments — October 31, 2012
Time for another catch-all post. First and saddest — one of the earliest great commenters on this blog, and a beloved figure in the Boston-area database community, was Dan Weinreb, whom I had known since some Symbolics briefings in the early 1980s. He passed away recently, much much much too young. Looking back for a couple of examples — even if you’ve never heard of him before, I see that Dan ‘s 2009 comment on Tokutek is still interesting today, and so is a post on his own blog disagreeing with some of my choices in terminology.
Otherwise, in no particular order:
1. Chris Bird is learning MongoDB. As is common for Chris, his comments are both amusing and enlightening.
2. When I relayed Cloudera’s comments on Hadoop adoption, I left out a couple of categories. One Cloudera called “mobile”; when I probed, that was about HBase, with an example being messaging apps.
The other was “phone home” — i.e., the ingest of machine-generated data from a lot of different devices. This is something that’s obviously been coming for several years — but I’m increasingly getting the sense that it’s actually arrived.
Categories: Cloudera, Data integration and middleware, Hadoop, HBase, Informatica, Metamarkets and Druid, MongoDB, NoSQL, Open source, Telecommunications | 2 Comments |
Introduction to Continuuity
I chatted with Todd Papaioannou about his new company Continuuity. Todd is as handy at combining buzzwords as he is at concatenating vowels, and so Continuuity — with two “U”s — is making a big data fabric platform as a service with REST APIs that runs over Hadoop and HBase in the private or public clouds. I found the whole thing confusing, in that:
- I recoil against buzzwords. In particular …
- … I pay as little attention to distinctions among PaaS/IaaS/WaaS — Platform/Infrastructure/Whatever as a Service — as I can.
- The Continuuity story sounds Heroku-like, but Todd doesn’t want Continuuity compared to Heroku.
- Todd does want Continuuity discussed in terms of the application server category, but:
- It is hard to discuss app servers without segueing quickly amongst development, deployment, and data connectivity, and Continuuity is no exception to that rule.
- There is doubt as to whether using app servers makes any sense.
But all confusion aside, there are some interesting aspects to Continuuity. Read more
Categories: Application servers, Cloud computing, Hadoop, HBase, MapReduce, Parallelization, Predictive modeling and advanced analytics, Software as a Service (SaaS) | 7 Comments |
Quick notes on Impala
Edit: There is now a follow-up post on Cloudera Impala with substantially more detail.
In my world it’s possible to have a hasty 2-hour conversation, and that’s exactly what I had with Cloudera last week. We touched on hardware and general adoption, but much of the conversation was about Cloudera Impala, announced today. Like Hive, Impala turns Hadoop into a basic analytic RDBMS, with similar SQL/Hadoop integration benefits to those of Hadapt. In particular:
- Impala is Hive-compatible in query language (HQL, which is a whole lot like SQL), metadata, JDBC/ODBC drivers, etc.
- Unlike Hive, Impala does not work through Hadoop MapReduce.
- Unlike Hadoop MapReduce and hence Hive, Impala does not persist intermediate results to disk. This is good for performance, but on extremely long-running queries it increases the risk you’ll have a node failure and have to restart the query from scratch.
- Impala in its first version is missing some Hive syntax, notably in support for UDFs (User-Defined Functions).
Beyond that: Read more
Categories: Cloudera, Columnar database management, Database compression, Hadapt, Hadoop, MapReduce, Open source, SQL/Hadoop integration | 6 Comments |
Introduction to Cirro
Stuart Frost, of DATAllegro fame, has started a small family of companies, and they’ve become my clients sort of as a group. The first one that I’m choosing to write about is Cirro, for which the basics are:
- Cirro does data federation for analytics.
- Cirro has 10 full-time people plus 4 part-timers.
- Cirro launched its product in June.
- Cirro doesn’t have customers yet, but hopes to fix that soon.
Data federation stories are often hard to understand because, until you drill down, they implausibly sound as if they do anything for everybody. That said, it’s reasonable to think of Cirro as a layer between Hadoop and your BI tool that:
- Helps with data transformations.
- Helps join Hadoop data to relational tables, even if the joins are large ones.
In both cases, Cirro is calling on your data management software for help, RDBMS or Hadoop as the case may be.
More precisely, Cirro’s approach is: Read more
Categories: Business intelligence, Cirro, Data integration and middleware, Hadoop, MapReduce, Tableau Software | 5 Comments |
Introduction to Platfora
When I wrote last week that I have at least 5 clients claiming they’re uniquely positioned to support BI over Hadoop (most of whom partner with a 6th client, Tableau) the non-partnering exception I had in mind was Platfora, Ben Werther’s oh-so-stealthy startup that is finally de-stealthing today. Platfora combines:
- An interesting approach to analytic data management.
- Business intelligence tools integrated with that.
The whole thing sounds like a perhaps more general and certainly non-SaaS version of what Metamarkets has been offering for a while.
The Platfora technical story starts: Read more
Categories: Business intelligence, Columnar database management, Data models and architecture, Data warehousing, Database compression, Hadoop, Memory-centric data management, Platfora | 6 Comments |
Notes on Hadoop adoption and trends
With Strata/Hadoop World being next week, there is much Hadoop discussion. One theme of the season is BI over Hadoop. I have at least 5 clients claiming they’re uniquely positioned to support that (most of whom partner with a 6th client, Tableau); the first 2 whose offerings I’ve actually written about are Teradata Aster and Hadapt. More generally, I’m hearing “Using Hadoop is hard; we’re here to make it easier for you.”
If enterprises aren’t yet happily running business intelligence against Hadoop, what are they doing with it instead? I took the opportunity to ask Cloudera, whose answers didn’t contradict anything I’m hearing elsewhere. As Cloudera tells it (approximately — this part of the conversation* was rushed): Read more
Notes on Hadoop hardware
I talked with Cloudera yesterday about an unannounced technology, and took the opportunity to ask some non-embargoed questions as well. In particular, I requested an update to what I wrote last year about typical Hadoop hardware.
Cloudera thinks the picture now is:
- 2-socket servers, with 4- or 6-core chips.
- Increasing number of spindles, with 12 2-TB spindles being common.
- 48 gigs of RAM is most common, with 64-96 fairly frequent.
- A couple of 1GigE networking ports.
Discussion around that included:
- Enterprises had been running out of storage space; hence the increased amount of storage. 🙂
- Even more storage can be stuffed on a node, and at times is. But at a certain point there’s so much data on a node that recovery from node failure is too forbidding.
- There are some experiments with 10 GigE.
Categories: Cloudera, Data warehouse appliances, Hadoop, MapR, Solid-state memory, Storage | 7 Comments |
Notes on analytic hardware
I took the opportunity of Teradata’s Aster/Hadoop appliance announcement to catch up with Teradata hardware chief Carson Schmidt. I love talking with Carson, about both general design philosophy and his views on specific hardware component technologies.
From a hardware-requirements standpoint, Carson seems to view Aster and Hadoop as more similar to each other than either is to, say, a Teradata Active Data Warehouse. In particular, for Aster and Hadoop:
- I/O is more sequential.
- The CPU:I/O ratio is higher.
- Uptime is a little less crucial.
The most obvious implication is differences in the choice of parts, and of their ratio. Also, in the new Aster/Hadoop appliance, Carson is content to skate by with RAID 5 rather than RAID 1.
I think Carson’s views about flash memory can be reasonably summarized as: Read more
Categories: Aster Data, Data warehouse appliances, Data warehousing, Hadoop, Solid-state memory, Storage, Teradata | 2 Comments |