Cloudera Hadoop strategy and usage notes
When we scheduled a call to talk about Sentry, Cloudera’s Charles Zedlewski and I found time to discuss other stuff as well. One interesting part of our discussion was around the processing “frameworks” Cloudera sees as most important.
- The four biggies are:
- MapReduce. Duh.
- SQL, specifically Impala. This is as opposed to the uneasy Hive/MapReduce layering.
- Search.
- “Math” , which seems to mainly be through partnerships with SAS and Revolution Analytics. I don’t know a lot about how these work, but I presume they bypass MapReduce, in which case I could imagine them greatly outperforming Mahout.
- Stream processing (Storm) is next in line.
- Graph — e.g. Giraph — rises to at least the proof-of-concept level. Again, the hope would be that this well outperforms graph-on-MapReduce.
- Charles is also seeing at least POC interest in Spark.
- But MPI (Message Passing Interface) on Hadoop isn’t going anywhere fast, except to the extent it’s baked into SAS or other “math” frameworks. Generic MPI use cases evidently turn out to be a bad fit for Hadoop, due to factors such as:
- Low data volumes.
- Latencies in various parts of the system
HBase was artificially omitted from this “frameworks” discussion because Cloudera sees it as a little bit more of a “storage” system than a processing one.
Another good subject was offloading work to Hadoop, in a couple different senses of “offload”: Read more
Cloudera Sentry and other security subjects
I chatted with Charles Zedlewski of Cloudera on Thursday about security — especially Cloudera’s new offering Sentry — and other Hadoop subjects.
Sentry is:
- Developed by Cloudera.
- An Apache incubator project.
- Slated to be rolled into CDH — Cloudera’s Hadoop distribution — over the next couple of weeks.
- Only useful with Hive in Version 1, but planned to also work in the future with other Hadoop data access systems such as Pig, search and so on.
- Lacking in administrative scalability in Version 1, something that is also slated to be fixed in future releases.
Apparently, Hadoop security options pre-Sentry boil down to:
- Kerberos, which only works down to directory or file levels of granularity.
- Third-party products.
- Roll-your-own.
Sentry adds role-based permissions for SQL access to Hadoop:
- By server.
- By database.
- By table.
- By view.
for a variety of actions — selections, transformations, schema changes, etc. Sentry does this by examining a query plan and checking whether each step in the plan is permissible. Read more
Categories: Cloudera, Hadoop, IBM and DB2, Oracle | 7 Comments |
Hortonworks business notes
Hortonworks did a business-oriented round of outreach, talking with at least Derrick Harris and me. Notes from my call — for which Rob Bearden didn’t bother showing up — include, in no particular order:
- Hortonworks denies advanced acquisition discussions with either Microsoft and Intel. Of course, that doesn’t exactly contradict the widespread story of Intel having made an acquisition offer. Edit: I have subsequently heard, very credibly, that the denial was untrue.
- As vendors usually do, Hortonworks denies the extreme forms of Cloudera’s suggestion that Hortonworks competitive wins relate to price slashing. But Hortonworks does believe that its license fees often wind up being lower than Cloudera’s, due especially to Hortonworks offering few extra-charge items than Cloudera.
- Hortonworks used a figure of ~75 subscription customers. Edit: That figure turns out in retrospect to have been inflated. This does not include OEM sales through, for example, Teradata, Microsoft Azure, or Rackspace. However, that does include …
- … a small number of installations hosted in the cloud — e.g. ~2 on Amazon Web Services — or otherwise remotely. Also, testing in the cloud seems to be fairly frequent, and the cloud can also be a source of data ingested into Hadoop.
- Since Hortonworks a couple of times made it seem that Rackspace was an important partner, behind only Teradata and Microsoft, I finally asked why. Answers boiled down to a Rackspace Hadoop-as-a-service offering, plus joint work to improve Hadoop-on-OpenStack.
- Other Hortonworks reseller partners seem more important in terms of helping customers consume HDP (Hortonworks Data Platform), rather than for actually doing Hortonworks’ selling for it. (This is unsurprising — channel sales rarely are a path to success for a product that is also appropriately sold by a direct force.)
- Hortonworks listed its major industry sectors as:
- Web and retailing, which it identifies as one thing.
- Media.
- Telecommunications.
- Health care (various subsectors).
- Financial services, which it called “competitive” in the kind of tone that usually signifies “we lose a lot more than we win, and would love to change that”.
In Hortonworks’ view, Hadoop adopters typically start with a specific use case around a new type of data, such as clickstream, sensor, server log, geolocation, or social. Read more
Online booksellers and their “eventually correct” data
I’ve become involved in the world of online book publishing through Linda Barlow, who among other credentials:
- Has been a best-selling, award-winning novelist.
- Is superbly connected in the writing world. (Two terms as a director of the Author’s Guild, past president of Novelists, Inc., etc.)
- Taught college courses on both English and neurobiology.
- Was a top-two independent expert on search engines (her only peer was Danny Sullivan).
- Wrote better SQL than I did.
In other words, she’s no dummy. 🙂
I emphasize that because she’s my source about some screw-ups at Amazon.com and other online booksellers that at first seem a little hard to believe. In no particular order: Read more
Categories: Amazon and its cloud, Specific users | 4 Comments |
Aerospike 3
My clients at Aerospike are coming out with their Version 3, and as several of my clients do, have encouraged me to front-run what otherwise would be the Monday embargo.
I encourage such behavior with arguments including:
- “Nobody else is going to write in such technical detail anyway, so they won’t mind.”
- “I’ve done this before. Other writers haven’t complained.”
- “In fact, some other writers like having me go first, so that they can learn from and/or point to what I say.”
- “Hey, I don’t ask for much in the way of exclusives, but I’d be pleased if you threw me this bone.”
Aerospike 2’s value proposition, let us recall, was:
… performance, consistent performance, and uninterrupted operations …
- Aerospike’s consistent performance claims are along the lines of sub-millisecond latency, with 99.9% of responses being within 5 milliseconds, and even a node outage only borking performance for some 10s of milliseconds.
- Uninterrupted operation is a core Aerospike design goal, and the company says that to date, no Aerospike production cluster has ever gone down.
The major support for such claims is Aerospike’s success in selling to the digital advertising market, which is probably second only to high-frequency trading in its low-latency demands. For example, Aerospike’s CMO Monica Pal sent along a link to what apparently is:
- a video by a customer named Brightroll …
- … who enjoy SLAs (Service Level Agreements) such as those cited above (they actually mentioned five 9s)* …
- … at peak loads of 10-12 million requests/minute.
Categories: Aerospike, Market share and customer counts, Memory-centric data management, NoSQL, Pricing, Web analytics | 3 Comments |
The two sides of BI
As is the case for most important categories of technology, discussions of BI can get confused. I’ve remarked in the past that there are numerous kinds of BI, and that the very origin of the term “business intelligence” can’t even be pinned down to the nearest century. But the most fundamental confusion of all is that business intelligence technology really is two different things, which in simplest terms may be categorized as user interface (UI) and platform* technology. And so:
- The UI aspect is why BI tends to be sold to business departments; the platform aspect is why it also makes sense to sell BI to IT shops attempting to establish enterprise standards.
- The UI aspect is why it makes sense to sell and market BI much as one would applications; the platform aspect is why it makes sense to sell and market BI much as one would database technology.
- The UI aspect is why vendors want to integrate BI with transaction-processing applications; the platform aspect is, I suppose, why they have so much trouble making the integration work.
- The UI aspect is why BI is judged on … well, on snazzy UIs and demos. The platform aspect is a big reason why the snazziest UI doesn’t always win.
*I wanted to say “server” or “server-side” instead of “platform”, as I dislike the latter word. But it’s too inaccurate, for example in the case of the original Cognos PowerPlay, and also in various thin-client scenarios.
Key aspects of BI platform technology can include:
- Query and data management. That’s the area I most commonly write about, for example in the cases of Platfora, QlikView, or Metamarkets. It goes back to the 1990s — notably the Business Objects semantic layer and Cognos PowerPlay MOLAP (MultiDimensional OnLine Analytic Processing) engine — and indeed before that to the report writers and fourth-generation languages of the 1970s. This overlaps somewhat with …
- … data integration and metadata management. Business Objects, Qlik, and other BI vendors have bought data integration vendors. Arguably, there was a period when Information Builders’ main business was data connectivity and integration. And sometimes the main value proposition for a BI deal is “We need some way to get at all that data and bring it together.”
- Security and access control — authentication, authorization, and all the additional As.
- Scheduling and delivery. When 10s of 1000s of desktops are being served, these aren’t entirely trivial. Ditto when dealing with occasionally-connected mobile devices.
Things I keep needing to say
Some subjects just keep coming up. And so I keep saying things like:
Most generalizations about “Big Data” are false. “Big Data” is a horrific catch-all term, with many different meanings.
Most generalizations about Hadoop are false. Reasons include:
- Hadoop is a collection of disparate things, most particularly data storage and application execution systems.
- The transition from Hadoop 1 to Hadoop 2 will be drastic.
- For key aspects of Hadoop — especially file format and execution engine — there are or will be widely varied options.
Hadoop won’t soon replace relational data warehouses, if indeed it ever does. SQL-on-Hadoop is still very immature. And you can’t replace data warehouses unless you have the power of SQL.
Note: SQL isn’t the only way to provide “the power of SQL”, but alternative approaches are just as immature.
Most generalizations about NoSQL are false. Different NoSQL products are … different. It’s not even accurate to say that all NoSQL systems lack SQL interfaces. (For example, SQL-on-Hadoop often includes SQL-on-HBase.)
Curt Monash on video
I made a remarkably rumpled video appearance yesterday with SiliconAngle honchos John Furrier and Dave Vellante. (Excuses include <3 hours sleep, and then a scrambling reaction to a schedule change.) Topics covered included, with approximate timechecks:
- 0:00 Introductory pabulum, and some technical difficulties
- 2:00 More introduction
- 3:00 Dynamic schemas and data model churn
- 6:00 Surveillance and privacy
- 13:00 Hadoop, especially the distro wars
- 22:00 BI innovation
- 23:30 More on dynamic schemas and data model churn
Edit: Some of my remarks were transcribed.
Related links
- I posted on dynamic schemas data model churn a few days ago.
- I capped off a series on privacy and surveillance a few days ago.
- I commented on various Hadoop distributions in June.
Categories: Business intelligence, ClearStory Data, Data warehousing, Hadoop, MapR, MapReduce, Surveillance and privacy | Leave a Comment |
Hortonworks, Hadoop, Stinger and Hive
I chatted yesterday with the Hortonworks gang. The main subject was Hortonworks’ approach to SQL-on-Hadoop — commonly called Stinger — but at my request we cycled through a bunch of other topics as well. Company-specific notes include:
- Hortonworks founder J. Eric “Eric14” Baldeschwieler is no longer at Hortonworks, although I imagine he stays closely in touch. What he’s doing next is unspecified, except by the general phrase “his own thing”. (Derrick Harris has more on Eric’s departure.)
- John Kreisa still is at Hortonworks, just not as marketing VP. Think instead of partnerships and projects.
- ~250 employees.
- ~70-75 subscription customers.
Our deployment and use case discussions were a little confused, because a key part of Hortonworks’ strategy is to support and encourage the idea of combining use cases and workloads on a single cluster. But I did hear:
- 10ish nodes for a typical starting cluster.
- 100ish nodes for a typical “data lake” committed adoption.
- Teradata UDA (Unified Data Architecture)* customers sometimes (typically?) jumping straight to a data lake scenario.
- A few users in the 10s of 1000s of nodes. (Obviously Yahoo is one.)
- HBase used in >50% of installations.
- Hive probably even more than that.
- Hortonworks is seeing a fair amount of interest in Windows Hadoop deployments.
*By the way — Teradata seems serious about pushing the UDA as a core message.
Ecosystem notes, in Hortonworks’ perception, included:
- Cloudera is obviously Hortonworks’ biggest distro competitor. Next is IBM, presumably in its blue-forever installed base. MapR is barely on the radar screen; Pivotal’s likely rise hasn’t yet hit sales reports.
- Hortonworks evidently sees a lot of MicroStrategy and Tableau, and some Platfora and Datameer, the latter two at around the same level of interest.
- Accumulo is a big deal in the Federal government, and has gotten a few health care wins as well. Its success is all about security. (Note: That’s all consistent with what I hear elsewhere.)
I also asked specifically about OpenStack. Hortonworks is a member of the OpenStack project, contributes nontrivially to Swift and other subprojects, and sees Rackspace as an important partner. But despite all that, I think strong Hadoop/OpenStack integration is something for the indefinite future.
Hortonworks’ views about Hadoop 2.0 start from the premise that its goal is to support running a multitude of workloads on a single cluster. (See, for example, what I previously posted about Tez and YARN.) Timing notes for Hadoop 2.0 include:
- It’s been in preview/release candidate/commercial beta mode for weeks.
- Q3 is the goal; H2 is the emphatic goal.
- Yahoo’s been in production with YARN >8 months, and has no MapReduce 1 clusters left. (Yahoo has >35,000 Hadoop nodes.)
- The last months of delays have been mainly about sprucing up various APIs and protocols, which may need to serve for a similar multi-year period as Hadoop 1’s have. But there also was some YARN stabilization into May.
Frankly, I think Cloudera’s earlier and necessarily incremental Hadoop 2 rollout was a better choice than Hortonworks’ later big bang, even though the core-mission aspect of Hadoop 2.0 is what was least ready. HDFS (Hadoop Distributed File System) performance, NameNode failover and so on were well worth having, and it’s more than a year between Cloudera starting supporting them and when Hortonworks is offering Hadoop 2.0.
Hortonworks’ approach to doing SQL-on-Hadoop can be summarized simply as “Make Hive into as good an analytic RDBMS as possible, all in open source”. Key elements include: Read more
Data model churn
Perhaps we should remind ourselves of the many ways data models can be caused to churn. Here are some examples that are top-of-mind for me. They do overlap a lot — and the whole discussion overlaps with my post about schema complexity last January, and more generally with what I’ve written about dynamic schemas for the past several years..
Just to confuse things further — some of these examples show the importance of RDBMS, while others highlight the relational model’s limitations.
The old standbys
Product and service changes. Simple changes to your product line many not require any changes to the databases recording their production and sale. More complex product changes, however, probably will.
A big help in MCI’s rise in the 1980s was its new Friends and Family service offering. AT&T couldn’t respond quickly, because it couldn’t get the programming done, where by “programming” I mainly mean database integration and design. If all that was before your time, this link seems like a fairly contemporaneous case study.
Organizational changes. A common source of hassle, especially around databases that support business intelligence or planning/budgeting, is organizational change. Kalido’s whole business was based on accommodating that, last I checked, as were a lot of BI consultants’. Read more