How Revolution Analytics parallelizes R
I talked tonight with Lee Edlefsen, Chief Scientist of Revolution Analytics, and now think I understand Revolution’s parallel R much better than I did before.
There are four primary ways that people try to parallelize predictive modeling:
- They can run the same algorithm on different parts of a dataset on different nodes, then return all the results, and claim they’ve parallelized. This is trivial and not really a solution. It is also the last-ditch fallback position for those who parallelize more seriously.
- They can generate intermediate results from different parts of a dataset on different nodes, then generate and return a single final result. This is what Revolution does.
- They can parallelize the linear algebra that underlies so many algorithms. Netezza and Greenplum tried this, but I don’t think it worked out very well in either case. Lee cited a saying in statistical computing “If you’re using matrices, you’re doing it wrong”; he thinks shortcuts and workarounds are almost always the better way to go.
- They can jack up the speed of inter-node communication, perhaps via MPI (Messaging Passing Interface), so that full parallelization isn’t needed. That’s SAS’ main approach.
One confusing aspect of this discussion is that it could reference several heavily-overlapping but not identical categories of algorithms, including:
- External memory algorithms, which operates on datasets too big to fit in main memory, by — for starters — reading in and working on a part of the data at a time. Lee observes that these are almost always parallelizable.
- What Revolution markets as External Memory Algorithms, which are those external memory algorithms it has gotten around to implementing so far. These are all parallelized. They are also all in the category of …
- … algorithms that can be parallelized by:
- Operating on data in parts.
- Getting intermediate results.
- Combining them in some way for a final result.
- Algorithms of the previous category, where the way of combining them specifically is in the form of summation, such as those discussed in the famous paper Map-Reduce for Machine Learning on Multicore. Not all of Revolution’s current parallel algorithms fall into this group.
To be clear, all Revolution’s parallel algorithms are in Category #2 by definition and Category #3 in practice. However, they aren’t all in Category #4.
Categories: Greenplum, Hadoop, MapReduce, Netezza, Parallelization, Predictive modeling and advanced analytics, Revolution Analytics, Teradata | Leave a Comment |
RDBMS and their bundle-mates
Relational DBMS used to be fairly straightforward product suites, which boiled down to:
- A big SQL interpreter.
- A bunch of administrative and operational tools.
- Some very optional add-ons, often including an application development tool.
Now, however, most RDBMS are sold as part of something bigger.
- Oracle has hugely thickened its stack, as part of an Innovator’s Solution strategy — hardware, middleware, applications, business intelligence, and more.
- IBM has moved aggressively to a bundled “appliance” strategy. Even before that, IBM DB2 long sold much better to committed IBM accounts than as a software-only offering.
- Microsoft SQL Server is part of a stack, starting with the Windows operating system.
- Sybase was an exception to this rule, with thin(ner) stacks for both Adaptive Server Enterprise and Sybase IQ. But Sybase is now owned by SAP, and increasingly integrated as a business with …
- … SAP HANA, which is closely associated with SAP’s applications.
- Teradata has always been a hardware/software vendor. The most successful of its analytic DBMS rivals, in some order, are:
- Netezza, a pure appliance vendor, now part of IBM.
- Greenplum, an appliance-mainly vendor for most (not all) of its existence, and in particular now as a part of EMC Pivotal.
- Vertica, more of a software-only vendor than the others, but now owned by and increasingly mainstreamed into hardware vendor HP.
- MySQL’s glory years were as part of the “LAMP” stack.
- Various thin-stack RDBMS that once were or could have been important market players … aren’t. Examples include Progress OpenEdge, IBM Informix, and the various strays adopted by Actian.
Comments on the 2013 Gartner Magic Quadrant for Operational Database Management Systems
The 2013 Gartner Magic Quadrant for Operational Database Management Systems is out. “Operational” seems to be Gartner’s term for what I call short-request, in each case the point being that OLTP (OnLine Transaction Processing) is a dubious term when systems omit strict consistency, and when even strictly consistent systems may lack full transactional semantics. As is usually the case with Gartner Magic Quadrants:
- I admire the raw research.
- The opinions contained are generally reasonable (especially since Merv Adrian joined the Gartner team).
- Some of the details are questionable.
- There’s generally an excessive focus on Gartner’s perception of vendors’ business skills, and on vendors’ willingness to parrot all the buzzphrases Gartner wants to hear.
- The trends Gartner highlights are similar to those I see, although our emphasis may be different, and they may leave some important ones out. (Big omission — support for lightweight analytics integrated into operational applications, one of the more genuine forms of real-time analytics.)
Anyhow: Read more
Specialized business intelligence
A remarkable number of vendors are involved in what might be called “specialized business intelligence”. Some don’t want to call it that, because they think that “BI” is old and passé’, and what they do is new and better. Still, if we define BI technology as, more or less:
- Querying data and doing simple calculations on it, and …
- … displaying it in a nice interface …
- … which also provides good capabilities for navigation,
then BI is indeed a big part of what they’re doing.
Why would vendors want to specialize their BI technology? The main reason would be to suit it for situations in which even the best general-purpose BI options aren’t good enough. The obvious scenarios are those in which the mismatch is one or both of:
- Kinds of data.
- Kinds of questions asked about the data.
For example, in no particular order: Read more
Categories: Business intelligence, ClearStory Data, Metamarkets and Druid, PivotLink, Platfora, Splunk, StreamBase | 6 Comments |
Splunk strengthens its stack
I’m a little shaky on embargo details — but I do know what was in my own quote in a Splunk press release that went out yesterday. 🙂
Splunk has been rolling out a lot of news. In particular:
- Hunk follows through on the Hadoop/Splunk (get it?) co-opetition I foreshadowed last year, including access to Hadoop via the same tools that run over the Splunk data store, plus …
- … some Datameer-like capabilities to view partial Hadoop-job results as they flow in.
- Splunk 6 has lots of new features, including a bunch of better please-don’t-call-it-BI capabilities, and …
- … a high(er)-performance data store into which you can selectively copy columns of data.
I imagine there are some operationally-oriented use cases for which Splunk instantly offers the best Hadoop business intelligence choice available. But what I really think is cool is Splunk’s schema-on-need story, wherein:
- Data comes in wholly schema-less, in a time series of text snippets.
- Some of the fields in the text snippets are indexed for faster analysis, automagically or upon user decree.
- All this can now happen over the Splunk data store or (new option) over Hadoop.
- Fields can (in another new option) also be copied to a separate data store, claimed to be of much higher performance.
That highlights a pretty serious and flexible vertical analytic stack. I like it.
Categories: Business intelligence, Data models and architecture, Data warehousing, Hadoop, Schema on need, Splunk | 2 Comments |
Glassbeam instantiates a lot of trends
Glassbeam checked in recently, and they turn out to exemplify quite a few of the themes I’ve been writing about. For starters:
- Glassbeam has an analytic technology stack focused on poly-structured machine-generated data.
- Glassbeam partially organizes that data into event series …
- … in a schema that is modified as needed.
Glassbeam basics include:
- Founded in 2009.
- Based in Santa Clara. Back-end engineering in Bangalore.
- $6 million in angel money; no other VC.
- High single-digit customer count, …
- … plus another high single-digit number of end customers for an OEM offering a limited version of their product.
All Glassbeam customers except one are SaaS/cloud (Software as a Service), and even that one was only offered a subscription (as oppose to perpetual license) price.
So what does Glassbeam’s technology do? Glassbeam says it is focused on “machine data analytics,” specifically for the “Internet of Things”, which it distinguishes from IT logs.* Specifically, Glassbeam sells to manufacturers of complex devices — IT (most of its sales so far ), medical, automotive (aspirational to date), etc. — and helps them analyze “phone home” data, for both support/customer service and marketing kinds of use cases. As of a recent release, the Glassbeam stack can: Read more
JSON in Teradata
I coined the term schema-on-need last month. More precisely, I coined it while being briefed on JSON-in-Teradata, which was announced earlier this week, and is slated for availability in the first half of 2014.
The basic JSON-in-Teradata story is as you expect:
- A JSON document is stuck into a relational field.
(Oddly, Teradata wasn’t yet sure whether the field would be a BLOB or VARCHAR or something else.)Edit: See Dan Graham’s comment below. - Fields within the JSON document can be indexed on.
- Those fields can be referenced in SQL statements much as regular Teradata columns can.
You have to retrieve the whole document.Edit: See Dan Graham’s comment below.- To avert the performance pain of retrieving the whole document, you can of course copy any particular field into a column of its own. (That’s the schema-on-need part of the story.)
JSON virtual columns are referenced a little differently than ordinary physical columns are. Thus, if you materialize a virtual column, you have to change your SQL. If you’re doing business intelligence through a semantic layer, or otherwise have some kind of declarative translation, that’s probably not a big drawback. If you’re coding analytic procedures directly, it still may not be a big drawback — hopefully you won’t reference the virtual column too many times in code before you decide to materialize it instead.
My Bobby McFerrin* imitation notwithstanding, Hadapt illustrates a schema-on-need approach that is slicker than Teradata’s in two ways. First, Hadapt has full SQL transparency between virtual and physical columns. Second, Hadapt handles not just JSON, but anything represented by key-value pairs. Still, like XML before it but more concisely, JSON is a pretty versatile data interchange format. So JSON-in-Teradata would seem to be useful as it stands.
*The singer in the classic 1988 music video Don’t Worry Be Happy. The other two performers, of course, were Elton John and Robin Williams.
Categories: Data models and architecture, Data warehousing, Hadapt, Schema on need, Structured documents, Teradata | 3 Comments |
Entity-centric event series analytics
Much of modern analytic technology deals with what might be called an entity-centric sequence of events. For example:
- You receive and open various emails.
- You click on and look at various web sites and pages.
- Specific elements are displayed on those pages.
- You study various products, and even buy some.
Analytic questions are asked along the lines “Which sequences of events are most productive in terms of leading to the events we really desire?”, such as product sales. Another major area is sessionization, along with data preparation tasks that boil down to arranging data into meaningful event sequences in the first place.
A number of my clients are focused on such scenarios, including WibiData, Teradata Aster (e.g. via nPath), Platfora (in the imminent Platfora 3), and others. And so I get involved in naming exercises. The term entity-centric came along a while ago, because “user-centric” is too limiting. (E.g., the data may not be about a person, but rather specifically about the actions taken on her mobile device.) Now I’m adding the term event series to cover the whole scenario, rather than the “event sequence(s)” I might appear to have been hinting at above.
I decided on “event series” earlier this week, after noting that: Read more
Aster 6, graph analytics, and BSP
Teradata Aster 6 has been preannounced (beta in Q4, general release in Q1 2014). The general architectural idea is:
- There are multiple data stores, the first two of which are:
- The classic Aster relational data store.
- A file system that emulates HDFS (Hadoop Distributed File System).
- There are multiple processing “engines”, where an engine is what occupies and controls a processing thread. These start with:
- Generic analytic SQL, as Aster has had all along.
- SQL-MR, the MapReduce Aster has also had all along.
- SQL-Graph aka SQL-GR, a graph analytics system.
- The Aster parser and optimizer accept glorified SQL, and work across all the engines combined.
There’s much more, of course, but those are the essential pieces.
Just to be clear: Teradata Aster 6, aka the Teradata Aster Discovery Platform, includes HDFS compatibility, native MapReduce and ways of invoking Hadoop MapReduce on non-Aster nodes or clusters — but even so, you can’t run Hadoop MapReduce within Aster over Aster’s version of HDFS.
The most dramatic immediate additions are in the graph analytics area.* The new SQL-Graph is supported by something called BSP (Bulk Synchronous Parallel). I’ll start by observing (and some of this is confusing):
- BSP was thought of a long time ago, as a general-purpose computing model, but recently has come to the fore specifically for graph analytics. (Think Pregel and Giraph, along with Teradata Aster.)
- BSP has a kind of execution-graph metaphor, which is different from the graph data it helps analyze.
- BSP is described as being a combination hardware/software technology, but Teradata Aster and everybody else I know of implements it in software only.
- Aster long ago talked of adding a graph data store, but has given up that plan; rather, it wants you to do graph analytics on data stored in tables (or accessed through views) in the usual way.
Use cases suggested are a lot of marketing, plus anti-fraud.
*Pay no attention to Aster’s previous claims to do a good job on graph — and not only via nPath — in SQL-MR.
So far as I can infer from examples I’ve seen, the semantics of Teradata Aster SQL-Graph start:
- Ordinary SQL except in the FROM clause.
- Functions/operators that are the arguments for FROM; of course, they output tables. You can write these yourself, or use Teradata Aster’s prebuilt ones.
Within those functions, the core idea is: Read more
Libraries in Teradata Aster
I recently wrote (emphasis added):
My clients at Teradata Aster probably see things differently, but I don’t think their library of pre-built analytic packages has been a big success. The same goes for other analytic platform vendors who have done similar (generally lesser) things. I believe that this is because such limited libraries don’t do enough of what users want.
The bolded part has been, shall we say, confirmed. As Randy Lea tells it, Teradata Aster sales qualification includes the determination that at least one SQL-MR operator — be relevant to the use case. (“Operator” seems to be the word now, rather than “function”.) Randy agreed that some users prefer hand-coding, but believes a large majority would like to push work to data analysts/business analysts who might have strong SQL skills, but be less adept at general mathematical programming.
This phrasing will all be less accurate after the release of Aster 6, which extends Aster’s capabilities beyond the trinity of SQL, the SQL-MR library, and Aster-supported hand-coding.
Randy also said:
- A typical Teradata Aster production customer uses 8-12 of the prebuilt functions (but now they seem to be called operators).
- nPath is used in almost every Aster account. (And by now nPath has morphed into a family of about 5 different things.)
- The Aster collaborative filtering operator is used in almost every account.
- Ditto a/the text operator.
- Several business intelligence vendors are partnering for direct access to selected Teradata Aster operators — mentioned were Tableau, TIBCO Spotfire, and Alteryx.
- I don’t know whether this is on the strength of a specific operator or not, but Aster is used to help with predictive parts failure applications in multiple industries.
And Randy seemed to agree when I put words in his mouth to the effect that the prebuilt operators save users months of development time.
Meanwhile, Teradata Aster has started a whole new library for relationship analytics.