Oracle
Analysis of software titan Oracle and its efforts in database management, analytics, and middleware. Related subjects include:
- Oracle TimesTen
- (in The Monash Report)Operational and strategic issues for Oracle
- (in Software Memories) Historical notes on Oracle
- Most of what’s written about in this blog
Teradata bought Hadapt and Revelytix
My client Teradata bought my (former) clients Revelytix and Hadapt.* Obviously, I’m in confidentiality up to my eyeballs. That said — Teradata truly doesn’t know what it’s going to do with those acquisitions yet. Indeed, the acquisitions are too new for Teradata to have fully reviewed the code and so on, let alone made strategic decisions informed by that review. So while this is just a guess, I conjecture Teradata won’t say anything concrete until at least September, although I do expect some kind of stated direction in time for its October user conference.
*I love my business, but it does have one distressing aspect, namely the combination of subscription pricing and customer churn. When your customers transform really quickly, or even go out of existence, so sometimes does their reliance on you.
I’ve written extensively about Hadapt, but to review:
- The HadoopDB project was started by Dan Abadi and two grad students.
- HadoopDB tied a bunch of PostgreSQL instances together with Hadoop MapReduce. Lab benchmarks suggested it was more performant than the coyly named DBx (where x=2), but not necessarily competitive with top analytic RDBMS.
- Hadapt was formed to commercialize HadoopDB.
- After some fits and starts, Hadapt was a Cambridge-based company. Former Vertica CEO Chris Lynch invested even before he was a VC, and became an active chairman. Not coincidentally, Hadapt had a bunch of Vertica folks.
- Hadapt decided to stick with row-based PostgreSQL, Dan Abadi’s previous columnar enthusiasm notwithstanding. Not coincidentally, Hadapt’s performance never blew anyone away.
- Especially after the announcement of Cloudera Impala, Hadapt’s SQL-on-Hadoop positioning didn’t work out. Indeed, Hadapt laid off most or all of its sales and marketing folks. Hadapt pivoted to emphasize its schema-on-need story.
- Chris Lynch, who generally seems to think that IT vendors are created to be sold, shopped Hadapt aggressively.
As for what Teradata should do with Hadapt: Read more
Categories: Aster Data, Citus Data, Cloudera, Columnar database management, Data warehousing, Hadapt, Hadoop, MapReduce, Oracle, SQL/Hadoop integration, Teradata | 8 Comments |
The point of predicate pushdown
Oracle is announcing today what it’s calling “Oracle Big Data SQL”. As usual, I haven’t been briefed, but highlights seem to include:
- Oracle Big Data SQL is basically data federation using the External Tables capability of the Oracle DBMS.
- Unlike independent products — e.g. Cirro — Oracle Big Data SQL federates SQL queries only across Oracle offerings, such as the Oracle DBMS, the Oracle NoSQL offering, or Oracle’s Cloudera-based Hadoop appliance.
- Also unlike independent products, Oracle Big Data SQL is claimed to be compatible with Oracle’s usual security model and SQL dialect.
- At least when it talks to Hadoop, Oracle Big Data SQL exploits predicate pushdown to reduce network traffic.
And by the way — Oracle Big Data SQL is NOT “SQL-on-Hadoop” as that term is commonly construed, unless the complete Oracle DBMS is running on every node of a Hadoop cluster.
Predicate pushdown is actually a simple concept:
- If you issue a query in one place to run against a lot of data that’s in another place, you could spawn a lot of network traffic, which could be slow and costly. However …
- … if you can “push down” parts of the query to where the data is stored, and thus filter out most of the data, then you can greatly reduce network traffic.
“Predicate pushdown” gets its name from the fact that portions of SQL statements, specifically ones that filter data, are properly referred to as predicates. They earn that name because predicates in mathematical logic and clauses in SQL are the same kind of thing — statements that, upon evaluation, can be TRUE or FALSE for different values of variables or data.
The most famous example of predicate pushdown is Oracle Exadata, with the story there being:
- Oracle’s shared-everything architecture created a huge I/O bottleneck when querying large amounts of data, making Oracle inappropriate for very large data warehouses.
- Oracle Exadata added a second tier of servers each tied to a subset of the overall storage; certain predicates are pushed down to that tier.
- The I/O between Exadata’s two sets of servers is now tolerable, and so Oracle is now often competitive in the high-end data warehousing market,
Oracle evidently calls this “SmartScan”, and says Oracle Big Data SQL does something similar with predicate pushdown into Hadoop.
Oracle also hints at using predicate pushdown to do non-tabular operations on the non-relational systems, rather than shoehorning operations on multi-structured data into the Oracle DBMS, but my details on that are sparse.
Related link
- Chris Kanaracus’ coverage of the announcement quotes me at length.
Categories: Data warehousing, Exadata, Hadoop, Oracle, SQL/Hadoop integration, Theory and architecture | 10 Comments |
21st Century DBMS success and failure
As part of my series on the keys to and likelihood of success, I outlined some examples from the DBMS industry. The list turned out too long for a single post, so I split it up by millennia. The part on 20th Century DBMS success and failure went up Friday; in this one I’ll cover more recent events, organized in line with the original overview post. Categories addressed will include analytic RDBMS (including data warehouse appliances), NoSQL/non-SQL short-request DBMS, MySQL, PostgreSQL, NewSQL and Hadoop.
DBMS rarely have trouble with the criterion “Is there an identifiable buying process?” If an enterprise is doing application development projects, a DBMS is generally chosen for each one. And so the organization will generally have a process in place for buying DBMS, or accepting them for free. Central IT, departments, and — at least in the case of free open source stuff — developers all commonly have the capacity for DBMS acquisition.
In particular, at many enterprises either departments have the ability to buy their own analytic technology, or else IT will willingly buy and administer things for a single department. This dynamic fueled much of the early rise of analytic RDBMS.
Buyer inertia is a greater concern.
- A significant minority of enterprises are highly committed to their enterprise DBMS standards.
- Another significant minority aren’t quite as committed, but set pretty high bars for new DBMS products to cross nonetheless.
- FUD (Fear, Uncertainty and Doubt) about new DBMS is often justifiable, about stability and consistent performance alike.
A particularly complex version of this dynamic has played out in the market for analytic RDBMS/appliances.
- First the newer products (from Netezza onwards) were sold to organizations who knew they wanted great performance or price/performance.
- Then it became more about selling “business value” to organizations who needed more convincing about the benefits of great price/performance.
- Then the behemoth vendors became more competitive, as Teradata introduced lower-price models, Oracle introduced Exadata, Sybase got more aggressive with Sybase IQ, IBM bought Netezza, EMC bought Greenplum, HP bought Vertica and so on. It is now hard for a non-behemoth analytic RDBMS vendor to make headway at large enterprise accounts.
- Meanwhile, Hadoop has emerged as serious competitor for at least some analytic data management, especially but not only at internet companies.
Otherwise I’d say: Read more
MongoDB is growing up
I caught up with my clients at MongoDB to discuss the recent MongoDB 2.6, along with some new statements of direction. The biggest takeaway is that the MongoDB product, along with the associated MMS (MongoDB Management Service), is growing up. Aspects include:
- An actual automation and management user interface, as opposed to the current management style, which is almost entirely via scripts (except for the monitoring UI).
- That’s scheduled for public beta in May, and general availability later this year.
- It will include some kind of integrated provisioning with VMware, OpenStack, et al.
- One goal is to let you apply database changes, software upgrades, etc. without taking the cluster down.
- A reasonable backup strategy.
- A snapshot copy is made of the database.
- A copy of the log is streamed somewhere.
- Periodically — the default seems to be 6 hours — the log is applied to create a new current snapshot.
- For point-in-time recovery, you take the last snapshot prior to the point, and roll forward to the desired point.
- A reasonable locking strategy!
- Document-level locking is all-but-promised for MongoDB 2.8.
- That means what it sounds like. (I mention this because sometimes an XML database winds up being one big document, which leads to confusing conversations about what’s going on.)
- Security. My eyes glaze over at the details, but several major buzzwords have been checked off.
- A general code rewrite to allow for (more) rapid addition of future features.
NoSQL vs. NewSQL vs. traditional RDBMS
I frequently am asked questions that boil down to:
- When should one use NoSQL?
- When should one use a new SQL product (NewSQL or otherwise)?
- When should one use a traditional RDBMS (most likely Oracle, DB2, or SQL Server)?
The details vary with context — e.g. sometimes MySQL is a traditional RDBMS and sometimes it is a new kid — but the general class of questions keeps coming. And that’s just for short-request use cases; similar questions for analytic systems arise even more often.
My general answers start:
- Sometimes something isn’t broken, and doesn’t need fixing.
- Sometimes something is broken, and still doesn’t need fixing. Legacy decisions that you now regret may not be worth the trouble to change.
- Sometimes — especially but not only at smaller enterprises — choices are made for you. If you operate on SaaS, plus perhaps some generic web hosting technology, the whole DBMS discussion may be moot.
In particular, migration away from legacy DBMS raises many issues: Read more
Categories: Columnar database management, Couchbase, HBase, In-memory DBMS, Microsoft and SQL*Server, NewSQL, NoSQL, OLTP, Oracle, Parallelization, SAP AG | 18 Comments |
RDBMS and their bundle-mates
Relational DBMS used to be fairly straightforward product suites, which boiled down to:
- A big SQL interpreter.
- A bunch of administrative and operational tools.
- Some very optional add-ons, often including an application development tool.
Now, however, most RDBMS are sold as part of something bigger.
- Oracle has hugely thickened its stack, as part of an Innovator’s Solution strategy — hardware, middleware, applications, business intelligence, and more.
- IBM has moved aggressively to a bundled “appliance” strategy. Even before that, IBM DB2 long sold much better to committed IBM accounts than as a software-only offering.
- Microsoft SQL Server is part of a stack, starting with the Windows operating system.
- Sybase was an exception to this rule, with thin(ner) stacks for both Adaptive Server Enterprise and Sybase IQ. But Sybase is now owned by SAP, and increasingly integrated as a business with …
- … SAP HANA, which is closely associated with SAP’s applications.
- Teradata has always been a hardware/software vendor. The most successful of its analytic DBMS rivals, in some order, are:
- Netezza, a pure appliance vendor, now part of IBM.
- Greenplum, an appliance-mainly vendor for most (not all) of its existence, and in particular now as a part of EMC Pivotal.
- Vertica, more of a software-only vendor than the others, but now owned by and increasingly mainstreamed into hardware vendor HP.
- MySQL’s glory years were as part of the “LAMP” stack.
- Various thin-stack RDBMS that once were or could have been important market players … aren’t. Examples include Progress OpenEdge, IBM Informix, and the various strays adopted by Actian.
Comments on the 2013 Gartner Magic Quadrant for Operational Database Management Systems
The 2013 Gartner Magic Quadrant for Operational Database Management Systems is out. “Operational” seems to be Gartner’s term for what I call short-request, in each case the point being that OLTP (OnLine Transaction Processing) is a dubious term when systems omit strict consistency, and when even strictly consistent systems may lack full transactional semantics. As is usually the case with Gartner Magic Quadrants:
- I admire the raw research.
- The opinions contained are generally reasonable (especially since Merv Adrian joined the Gartner team).
- Some of the details are questionable.
- There’s generally an excessive focus on Gartner’s perception of vendors’ business skills, and on vendors’ willingness to parrot all the buzzphrases Gartner wants to hear.
- The trends Gartner highlights are similar to those I see, although our emphasis may be different, and they may leave some important ones out. (Big omission — support for lightweight analytics integrated into operational applications, one of the more genuine forms of real-time analytics.)
Anyhow: Read more
Thoughts on in-memory columnar add-ons
Oracle announced its in-memory columnar option Sunday. As usual, I wasn’t briefed; still, I have some observations. For starters:
- Oracle, IBM (Edit: See the rebuttal comment below), and Microsoft are all doing something similar …
- … because it makes sense.
- The basic idea is to take the technology that manages indexes — which are basically columns+pointers — and massage it into an actual column store. However …
- … the devil is in the details. See, for example, my May post on IBM’s version, called BLU, outlining all the engineering IBM did around that feature.
- Notwithstanding certain merits of this approach, I don’t believe in complete alternatives to analytic RDBMS. The rise of analytic DBMS oriented toward multi-structured data just strengthens that point.
I’d also add that Larry Ellison’s pitch “build columns to avoid all that index messiness” sounds like 80% bunk. The physical overhead should be at least as bad, and the main saving in administrative overhead should be that, in effect, you’re indexing ALL columns rather than picking and choosing.
Anyhow, this technology should be viewed as applying to traditional business transaction data, much more than to — for example — web interaction logs, or other machine-generated data. My thoughts around that distinction start:
- I argued back in 2011 that traditional databases will wind up in RAM, basically because …
- … Moore’s Law will make it ever cheaper to store them there.
- Still, cheaper != cheap, so this is a technology only to use with your most valuable data — i.e., that transactional stuff.
- These are very tabular technologies, without much in the way of multi-structured data support.
Categories: Columnar database management, Data warehousing, IBM and DB2, Memory-centric data management, Microsoft and SQL*Server, OLTP, Oracle, SAP AG, Workday | 6 Comments |
Cloudera Sentry and other security subjects
I chatted with Charles Zedlewski of Cloudera on Thursday about security — especially Cloudera’s new offering Sentry — and other Hadoop subjects.
Sentry is:
- Developed by Cloudera.
- An Apache incubator project.
- Slated to be rolled into CDH — Cloudera’s Hadoop distribution — over the next couple of weeks.
- Only useful with Hive in Version 1, but planned to also work in the future with other Hadoop data access systems such as Pig, search and so on.
- Lacking in administrative scalability in Version 1, something that is also slated to be fixed in future releases.
Apparently, Hadoop security options pre-Sentry boil down to:
- Kerberos, which only works down to directory or file levels of granularity.
- Third-party products.
- Roll-your-own.
Sentry adds role-based permissions for SQL access to Hadoop:
- By server.
- By database.
- By table.
- By view.
for a variety of actions — selections, transformations, schema changes, etc. Sentry does this by examining a query plan and checking whether each step in the plan is permissible. Read more
Categories: Cloudera, Hadoop, IBM and DB2, Oracle | 7 Comments |
“Disruption” in the software industry
I lampoon the word “disruptive” for being badly overused. On the other hand, I often refer to the concept myself. Perhaps I should clarify. 🙂
You probably know that the modern concept of disruption comes from Clayton Christensen, specifically in The Innovator’s Dilemma and its sequel, The Innovator’s Solution. The basic ideas are:
- Market leaders serve high-end customers with complex, high-end products and services, often distributed through a costly sales channel.
- Upstarts serve a different market segment, often cheaply and/or simply, perhaps with a different business model (e.g. a different sales channel).
- Upstarts expand their offerings, and eventually attack the leaders in their core markets.
In response (this is the Innovator’s Solution part):
- Leaders expand their product lines, increasing the value of their offerings in their core markets.
- In particular, leaders expand into adjacent market segments, capturing margins and value even if their historical core businesses are commoditized.
- Leaders may also diversify into direct competition with the upstarts, but that generally works only if it’s via a separate division, perhaps acquired, that has permission to compete hard with the main business.
But not all cleverness is “disruption”.
- Routine product advancement by leaders — even when it’s admirably clever — is “sustaining” innovation, as opposed to the disruptive stuff.
- Innovative new technology from small companies is not, in itself, disruption either.
Here are some of the examples that make me think of the whole subject. Read more