A new logical data layer?
I’m skeptical of data federation. I’m skeptical of all-things-to-all-people claims about logical data layers, and in particular of Gartner’s years-premature “Logical Data Warehouse” buzzphrase. Still, a reasonable number of my clients are stealthily trying to do some kind of data layer middleware, as are other vendors more openly, and I don’t think they’re all crazy.
Here are some thoughts as to why, and also as to challenges that need to be overcome.
There are many things a logical data layer might be trying to facilitate — writing, querying, batch data integration, real-time data integration and more. That said:
- When you’re writing data, you want it to be banged into a sufficiently-durable-to-acknowledge condition fast. If acknowledgements are slow, performance nightmares can ensue. So writing is the last place you want an extra layer, perhaps unless you’re content with the durability provided by an in-memory data grid.
- Queries are important. Also, they formally are present in other tasks, such as data transformation and movement. That’s why data manipulation packages (originally Pig, now Hive and fuller SQL) are so central to Hadoop.
Cask and CDAP
For starters:
- Continuuity toured in 2012 and touted its “app server for Hadoop” technology.
- Continuuity recently changed its name to Cask and went open source.
- Cask’s product is now called CDAP (Cask Data Application Platform). It’s still basically an app server for Hadoop and other “big data” — ouch do I hate that phrase — data stores.
- Cask and Cloudera partnered.
- I got a more technical Cask briefing this week.
Also:
- App servers are a notoriously amorphous technology. The focus of how they’re used can change greatly every couple of years.
- Partly for that reason, I was unimpressed by Continuuity’s original hype-filled positioning.
So far as I can tell:
- Cask’s current focus is to orchestrate job flows, with lots of data mappings.
- This is supposed to provide lots of developer benefits, for fairly obvious reasons. Those are pitched in terms of an integration story, more in a “free you from the mess of a many-part stack” sense than strictly in terms of data integration.
- CDAP already has a GUI to monitor what’s going on. A GUI to specify workflows is coming very soon.
- CDAP doesn’t consume a lot of cycles itself, and hence isn’t a real risk for unpleasant overhead, if “overhead” is narrowly defined. Rather, performance drags could come from …
- … sub-optimal choices in data mapping, database design or workflow composition.
Notes and links, December 12, 2014
1. A couple years ago I wrote skeptically about integrating predictive modeling and business intelligence. I’m less skeptical now.
For starters:
- The predictive experimentation I wrote about over Thanksgiving calls naturally for some BI/dashboarding to monitor how it’s going.
- If you think about Nutonian’s pitch, it can be approximated as “Root-cause analysis so easy a business analyst can do it.” That could be interesting to jump to after BI has turned up anomalies. And it should be pretty easy to whip up a UI for choosing a data set and objective function to model on, since those are both things that the BI tool would know how to get to anyway.
I’ve also heard a couple of ideas about how predictive modeling can support BI. One is via my client Omer Trajman, whose startup ScalingData is still semi-stealthy, but says they’re “working at the intersection of big data and IT operations”. The idea goes something like this:
- Suppose we have lots of logs about lots of things.* Machine learning can help:
- Notice what’s an anomaly.
- Group* together things that seem to be experiencing similar anomalies.
- That can inform a BI-plus interface for a human to figure out what is happening.
Makes sense to me. (Edit: ScalingData subsequently launched, under the name Rocana.)
* The word “cluster” could have been used here in a couple of different ways, so I decided to avoid it altogether.
Finally, I’m hearing a variety of “smart ETL/data preparation” and “we recommend what columns you should join” stories. I don’t know how much machine learning there’s been in those to date, but it’s usually at least on the roadmap to make the systems (yet) smarter in the future. The end benefit is usually to facilitate BI.
2. Discussion of graph DBMS can get confusing. For example: Read more
Categories: Business intelligence, Greenplum, Hadoop, Hortonworks, Log analysis, Neo Technology and Neo4j, Nutonian, Predictive modeling and advanced analytics, RDF and graphs, WibiData | 5 Comments |
Thoughts and notes, Thanksgiving weekend 2014
I’m taking a few weeks defocused from work, as a kind of grandpaternity leave. That said, the venue for my Dances of Infant Calming is a small-but-nice apartment in San Francisco, so a certain amount of thinking about tech industries is inevitable. I even found time last Tuesday to meet or speak with my clients at WibiData, MemSQL, Cloudera, Citus Data, and MongoDB. And thus:
1. I’ve been sloppy in my terminology around “geo-distribution”, in that I don’t always make it easy to distinguish between:
- Storing different parts of a database in different geographies, often for reasons of data privacy regulatory compliance.
- Replicating an entire database into different geographies, often for reasons of latency and/or availability/ disaster recovery,
The latter case can be subdivided further depending on whether multiple copies of the data can accept first writes (aka active-active, multi-master, or multi-active), or whether there’s a clear single master for each part of the database.
What made me think of this was a phone call with MongoDB in which I learned that the limit on number of replicas had been raised from 12 to 50, to support the full-replication/latency-reduction use case.
2. Three years ago I posted about agile (predictive) analytics. One of the points was:
… if you change your offers, prices, ad placement, ad text, ad appearance, call center scripts, or anything else, you immediately gain new information that isn’t well-reflected in your previous models.
Subsequently I’ve been hearing more about predictive experimentation such as bandit testing. WibiData, whose views are influenced by a couple of Very Famous Department Store clients (one of which is Macy’s), thinks experimentation is quite important. And it could be argued that experimentation is one of the simplest and most direct ways to increase the value of your data.
3. I’d further say that a number of developments, trends or possibilities I’m seeing are or could be connected. These include agile and experimental predictive analytics in general, as noted in the previous point, along with: Read more
An idealized log management and analysis system — from whom?
I’ve talked with many companies recently that believe they are:
- Focused on building a great data management and analytic stack for log management …
- … unlike all the other companies that might be saying the same thing 🙂 …
- … and certainly unlike expensive, poorly-scalable Splunk …
- … and also unlike less-focused vendors of analytic RDBMS (which are also expensive) and/or Hadoop distributions.
At best, I think such competitive claims are overwrought. Still, it’s a genuinely important subject and opportunity, so let’s consider what a great log management and analysis system might look like.
Much of this discussion could apply to machine-generated data in general. But right now I think more players are doing product management with an explicit conception either of log management or event-series analytics, so for this post I’ll share that focus too.
A short answer might be “Splunk, but with more analytic functionality and more scalable performance, at lower cost, plus numerous coupons for free pizza.” A more constructive and bottoms-up approach might start with: Read more
Notes and comments, March 17, 2014
I have ever more business-advice posts up on Strategic Messaging. Recent subjects include pricing and stealth-mode marketing. Other stuff I’ve been up to includes:
The Spark buzz keeps increasing; almost everybody I talk with expects Spark to win big, probably across several use cases.
Disclosure: I’ll soon be in a substantial client relationship with Databricks, hoping to improve their stealth-mode marketing. 😀
The “real-time analytics” gold rush I called out last year continues. A large fraction of the vendors I talk with have some variant of “real-time analytics” as a central message.
Basho had a major change in leadership. A Twitter exchange ensued. 🙂 Joab Jackson offered a more sober — figuratively and literally — take.
Hadapt laid off its sales and marketing folks, and perhaps some engineers as well. In a nutshell, Hadapt’s approach to SQL-on-Hadoop wasn’t selling vs. the many alternatives, and Hadapt is doubling down on poly-structured data*/schema-on-need.
*While Hadapt doesn’t to my knowledge use the term “poly-structured data”, some other vendors do. And so I may start using it more myself, at least when the poly-structured/multi-structured distinction actually seems significant.
WibiData is partnering with DataStax, WibiData is of course pleased to get access to Cassandra’s user base, which gave me the opportunity to ask why they thought Cassandra had beaten HBase in those accounts. The answer was performance and availability, while Cassandra’s traditional lead in geo-distribution wasn’t mentioned at all.
Disclosure: My fingerprints are all over that deal.
In other news, WibiData has had some executive departures as well, but seems to be staying the course on its strategy. I continue to think that WibiData has a really interesting vision about how to do large-data-volume interactive computing, and anybody in that space would do well to talk with them or at least look into the open source projects WibiData sponsors.
I encountered another apparently-popular machine-learning term — bandit model. It seems to be glorified A/B testing, and it seems to be popular. I think the point is that it tries to optimize for just how much you invest in testing unproven (for good or bad) alternatives.
I had an awkward set of interactions with Gooddata, including my longest conversations with them since 2009. Gooddata is in the early days of trying to offer an all-things-to-all-people analytic stack via SaaS (Software as a Service). I gather that Hadoop, Vertica, PostgreSQL (a cheaper Vertica alternative), Spark, Shark (as a faster version of Hive) and Cassandra (under the covers) are all in the mix — but please don’t hold me to those details.
I continue to think that computing is moving to a combination of appliances, clusters, and clouds. That said, I recently bought a new gaming-class computer, and spent many hours gaming on it just yesterday.* I.e., there’s room for general-purpose workstations as well. But otherwise, I’m not hearing anything that contradicts my core point.
*The last beta weekend for The Elder Scrolls Online; I loved Morrowind.
Entity-centric event series analytics
Much of modern analytic technology deals with what might be called an entity-centric sequence of events. For example:
- You receive and open various emails.
- You click on and look at various web sites and pages.
- Specific elements are displayed on those pages.
- You study various products, and even buy some.
Analytic questions are asked along the lines “Which sequences of events are most productive in terms of leading to the events we really desire?”, such as product sales. Another major area is sessionization, along with data preparation tasks that boil down to arranging data into meaningful event sequences in the first place.
A number of my clients are focused on such scenarios, including WibiData, Teradata Aster (e.g. via nPath), Platfora (in the imminent Platfora 3), and others. And so I get involved in naming exercises. The term entity-centric came along a while ago, because “user-centric” is too limiting. (E.g., the data may not be about a person, but rather specifically about the actions taken on her mobile device.) Now I’m adding the term event series to cover the whole scenario, rather than the “event sequence(s)” I might appear to have been hinting at above.
I decided on “event series” earlier this week, after noting that: Read more
WibiData and its Kiji technology
My clients at WibiData:
- Think they’re an application software company …
- … but actually are talking about what I call analytic application subsystems.
- Haven’t announced or shipped any of those either …
- … but will shortly.
- Have meanwhile shipped some cool enabling technology.
- Name their products after sushi restaurants.
Yeah, I like these guys. 🙂
If you’re building an application that “obviously” calls for a NoSQL database, and which has a strong predictive modeling aspect, then WibiData has thought more cleverly about what you need than most vendors I can think of. More precisely, WibiData has thought cleverly about your data management, movement, crunching, serving, and integration. For pure modeling sophistication, you should look elsewhere — but WibiData will gladly integrate with or execute those models for you.
WibiData’s enabling technology, now called Kiji, is a collection of modules, libraries, and so on — think Spring — running over Hadoop/HBase. Except for some newfound modularity, it is much like what I described at the time of WibiData’s launch or what WibiData further disclosed a few months later. Key aspects include:
- A way to define schemas in HBase, including ones that change as rapidly as consumer-interaction applications require.
- An analytic framework called “Produce/Gather”, which can execute at human real-time speeds (via its own execution engine) or with higher throughput in batch mode (by invoking Hadoop MapReduce).
- Enough load capabilities, Hive interaction, and so on to get data into the proper structure in Kiji in the first place.
Categories: Hadoop, HBase, NoSQL, Open source, Predictive modeling and advanced analytics, WibiData | 5 Comments |
Analytic application themes
I talk with a lot of companies, and repeatedly hear some of the same application themes. This post is my attempt to collect some of those ideas in one place.
1. So far, the buzzword of the year is “real-time analytics”, generally with “operational” or “big data” included as well. I hear variants of that positioning from NewSQL vendors (e.g. MemSQL), NoSQL vendors (e.g. AeroSpike), BI stack vendors (e.g. Platfora), application-stack vendors (e.g. WibiData), log analysis vendors (led by Splunk), data management vendors (e.g. Cloudera), and of course the CEP industry.
Yeah, yeah, I know — not all the named companies are in exactly the right market category. But that’s hard to avoid.
Why this gold rush? On the demand side, there’s a real or imagined need for speed. On the supply side, I’d say:
- There are vast numbers of companies offering data-management-related technology. They need ways to differentiate.
- Doing analytics at short-request speeds is an obvious data-management-related challenge, and not yet comprehensively addressed.
2. More generally, most of the applications I hear about are analytic, or have a strong analytic aspect. The three biggest areas — and these overlap — are:
- Customer interaction
- Network and sensor monitoring
- Game and mobile application back-ends
Also arising fairly frequently are:
- Algorithmic trading
- Anti-fraud
- Risk measurement
- Law enforcement/national security
- Healthcare
- Stakeholder-facing analytics
I’m hearing less about quality, defect tracking, and equipment maintenance than I used to, but those application areas have anyway been ebbing and flowing for decades.
Should you offer “complete” analytic applications?
WibiData is essentially on the trajectory:
- Started with platform-ish technology.
- Selling analytic application subsystems, focused for now on personalization.
- Hopeful of selling complete analytic applications in the future.
The same, it turns out, is true of Causata.* Talking with them both the same day led me to write this post. Read more