Netezza

Analysis of Netezza and its data warehouse appliances. Related subjects include:

June 16, 2017

Generally available Kudu

I talked with Cloudera about Kudu in early May. Besides giving me a lot of information about Kudu, Cloudera also helped confirm some trends I’m seeing elsewhere, including:

Now let’s talk about Kudu itself. As I discussed at length in September 2015, Kudu is:

Kudu’s adoption and roll-out story starts: Read more

August 28, 2016

Are analytic RDBMS and data warehouse appliances obsolete?

I used to spend most of my time — blogging and consulting alike — on data warehouse appliances and analytic DBMS. Now I’m barely involved with them. The most obvious reason is that there have been drastic changes in industry structure:

Simply reciting all that, however, begs the question of whether one should still care about analytic RDBMS at all.

My answer, in a nutshell, is:

Analytic RDBMS — whether on premises in software, in the form of data warehouse appliances, or in the cloud — are still great for hard-core business intelligence, where “hard-core” can refer to ad-hoc query complexity, reporting/dashboard concurrency, or both. But they aren’t good for much else.

Read more

April 9, 2015

Which analytic technology problems are important to solve for whom?

I hear much discussion of shortfalls in analytic technology, especially from companies that want to fill in the gaps. But how much do these gaps actually matter? In many cases, that depends on what the analytic technology is being used for. So let’s think about some different kinds of analytic task, and where they each might most stress today’s available technology.

In separating out the task areas, I’ll focus first on the spectrum “To what extent is this supposed to produce novel insights?” and second on the dimension “To what extent is this supposed to be integrated into a production/operational system?” Issues of latency, algorithmic novelty, etc. can follow after those. In particular, let’s consider the tasks: Read more

October 22, 2014

Is analytic data management finally headed for the cloud?

It seems reasonable to wonder whether analytic data management is headed for the cloud. In no particular order:

Read more

November 24, 2013

Thoughts on SaaS

Generalizing about SaaS (Software as a Service) is hard. To prune some of the confusion, let’s start by noting:

For smaller enterprises, the core outsourcing argument is compelling. How small? Well:

So except for special cases, an enterprise with less than $100 million or so in revenue may have trouble affording on-site data processing, at least at a mission-critical level of robustness. It may well be better to use NetSuite or something like that, assuming needed features are available in SaaS form.*

Read more

November 19, 2013

How Revolution Analytics parallelizes R

I talked tonight with Lee Edlefsen, Chief Scientist of Revolution Analytics, and now think I understand Revolution’s parallel R much better than I did before.

There are four primary ways that people try to parallelize predictive modeling:

One confusing aspect of this discussion is that it could reference several heavily-overlapping but not identical categories of algorithms, including:

  1. External memory algorithms, which operates on datasets too big to fit in main memory, by — for starters — reading in and working on a part of the data at a time. Lee observes that these are almost always parallelizable.
  2. What Revolution markets as External Memory Algorithms, which are those external memory algorithms it has gotten around to implementing so far. These are all parallelized. They are also all in the category of …
  3. … algorithms that can be parallelized by:
    • Operating on data in parts.
    • Getting intermediate results.
    • Combining them in some way for a final result.
  4. Algorithms of the previous category, where the way of combining them specifically is in the form of summation, such as those discussed in the famous paper Map-Reduce for Machine Learning on Multicore. Not all of Revolution’s current parallel algorithms fall into this group.

To be clear, all Revolution’s parallel algorithms are in Category #2 by definition and Category #3 in practice. However, they aren’t all in Category #4.

Read more

November 10, 2013

RDBMS and their bundle-mates

Relational DBMS used to be fairly straightforward product suites, which boiled down to:

Now, however, most RDBMS are sold as part of something bigger.

Read more

July 31, 2013

“Disruption” in the software industry

I lampoon the word “disruptive” for being badly overused. On the other hand, I often refer to the concept myself. Perhaps I should clarify. 🙂

You probably know that the modern concept of disruption comes from Clayton Christensen, specifically in The Innovator’s Dilemma and its sequel, The Innovator’s Solution. The basic ideas are:

In response (this is the Innovator’s Solution part):

But not all cleverness is “disruption”.

Here are some of the examples that make me think of the whole subject. Read more

May 27, 2013

Data skipping

Way back in 2006, I wrote about a cool Netezza feature called the zone map, which in essence allows you to do partition elimination even in the absence of strict range partitioning.

Netezza’s substitute for range partitioning is very simple. Netezza features “zone maps,” which note the minimum and maximum of each column value (if such concepts are meaningful) in each extent. This can amount to effective range partitioning over dates; if data is added over time, there’s a good chance that the data in any particular date range is clustered, and a zone map lets you pick out which data falls in the desired data range.

I further wrote

… that seems to be the primary scenario in which zone maps confer a large benefit.

But I now think that part was too pessimistic. For example, in bulk load scenarios, it’s easy to imagine ways in which data can be clustered or skewed. And in such cases, zone maps can let you skip a large fraction of potential I/O.

Over the years I’ve said that other things were reminiscent of Netezza zone maps, e.g. features of Infobright, SenSage, InfiniDB and even Microsoft SQL Server. But truth be told, when I actually use the phrase “zone map”, people usually give me a blank look.

In a recent briefing about BLU, IBM introduced me to a better term — data skipping. I like it and, unless somebody comes up with a good reason not to, I plan to start using it myself. 🙂

March 18, 2013

DBMS development and other subjects

The cardinal rules of DBMS development

Rule 1: Developing a good DBMS requires 5-7 years and tens of millions of dollars.

That’s if things go extremely well.

Rule 2: You aren’t an exception to Rule 1. 

In particular:

DBMS with Hadoop underpinnings …

… aren’t exceptions to the cardinal rules of DBMS development. That applies to Impala (Cloudera), Stinger (Hortonworks), and Hadapt, among others. Fortunately, the relevant vendors seem to be well aware of this fact. Read more

Next Page →

Feed: DBMS (database management system), DW (data warehousing), BI (business intelligence), and analytics technology Subscribe to the Monash Research feed via RSS or email:

Login

Search our blogs and white papers

Monash Research blogs

User consulting

Building a short list? Refining your strategic plan? We can help.

Vendor advisory

We tell vendors what's happening -- and, more important, what they should do about it.

Monash Research highlights

Learn about white papers, webcasts, and blog highlights, by RSS or email.