IBM and DB2
Analysis of IBM and various of its product lines in database management, analytics, and data integration.
- Cognos
- solidDB
- (in The Monash Report) Operational and strategic issues for IBM
- (in Text Technologies) IBM in the text analytics market
- (in Software Memories) Historical notes on IBM
- (in Software Memories) Historical notes on Informix
Thinking about market segments
It is a reasonable (over)simplification to say that my business boils down to:
- Advising vendors what/how to sell.
- Advising users what/how to buy.
One complication that commonly creeps in is that different groups of users have different buying practices and technology needs. Usually, I nod to that point in passing, perhaps by listing different application areas for a company or product. But now let’s address it head on. Whether or not you care about the particulars, I hope the sheer length of this post reminds you that there are many different market segments out there.
Last June I wrote:
In almost any IT decision, there are a number of environmental constraints that need to be acknowledged. Organizations may have standard vendors, favored vendors, or simply vendors who give them particularly deep discounts. Legacy systems are in place, application and system alike, and may or may not be open to replacement. Enterprises may have on-premise or off-premise preferences; SaaS (Software as a Service) vendors probably have multitenancy concerns. Your organization can determine which aspects of your system you’d ideally like to see be tightly integrated with each other, and which you’d prefer to keep only loosely coupled. You may have biases for or against open-source software. You may be pro- or anti-appliance. Some applications have a substantial need for elastic scaling. And some kinds of issues cut across multiple areas, such as budget, timeframe, security, or trained personnel.
I’d further say that it matters whether the buyer:
- Is a large central IT organization.
- Is the well-staffed IT organization of a particular business department.
- Is a small, frazzled IT organization.
- Has strong engineering or technical skills, but less in the way of IT specialists.
- Is trying to skate by without much technical knowledge of any kind.
Now let’s map those considerations (and others) to some specific market segments. Read more
Many kinds of memory-centric data management
I’m frequently asked to generalize in some way about in-memory or memory-centric data management. I can start:
- The desire for human real-time interactive response naturally leads to keeping data in RAM.
- Many databases will be ever cheaper to put into RAM over time, thanks to Moore’s Law. (Most) traditional databases will eventually wind up in RAM.
- However, there will be exceptions, mainly on the machine-generated side. Where data creation and RAM data storage are getting cheaper at similar rates … well, the overall cost of RAM storage may not significantly decline.
Getting more specific than that is hard, however, because:
- The possibilities for in-memory data storage are as numerous and varied as those for disk.
- The individual technologies and products for in-memory storage are much less mature than those for disk.
- Solid-state options such as flash just confuse things further.
Consider, for example, some of the in-memory data management ideas kicking around. Read more
Clarifying IBM DB2 Express-C crippleware
When Conor O’Mahony briefed me about DB2 10, he kept commenting that cool features he was talking about could be found in all editions of DB2, even the free one. So I asked what the limitations were on free DB2. He researched the matter and got back to me — and they sounded like what appeared to have been the limits when free DB2 was first introduced, over 6 years ago.
I tweeted about this, and was very fortunate that Ian Bjorhovde spoke up and said it wasn’t correct. Some scrambling ensued. It seems that the main sources of error were:
- People tend to confuse DB2 Express and DB2 Express-C; only the latter is free.
- What IBM said about the limitations DB2 Express-C upon its introduction 6 years ago should not be interpreted in line with what a plain reading might suggest.
In particular, we shouldn’t take IBM’s repeated 2006 statements that
DB2 Express-C may be deployed on … on AMD or Intel x86 systems with up to 2 dual-core chips. 4 GB of memory is the maximum supported.
to mean that you were ever allowed to use DB2 Express-C with 4 cores, nor with 4 GB of RAM.
To clarify things, Conor sent over email with permission to quote, as follows: Read more
Categories: IBM and DB2, Pricing | 14 Comments |
IBM DB2 10
Shortly before Tuesday’s launch of DB2 10, IBM’s Conor O’Mahony checked in for a relatively non-technical briefing.* More precisely, this is about DB2 for “distributed” systems, aka LUW (Linux/Unix/Windows); some of the features have already been in the mainframe version of DB2 for a while. IBM is graciously permitting me to post the associated DB2 10 announcement slide deck.
*I hope any errors in interpretation are minor.
Major aspects of DB2 10 include new or improved capabilities in the areas of:
- Compression.
- Analytic query performance.
- Data ingest.
- Multi-temperature data management.
- Workload management.
- Graph management/relationship analytics.
- Time-travel, bitemporal features, and bitemporal time-travel.
Of course, there are various other enhancements too, including to security (fine-grained access control), Oracle compatibility, and DB2 pureScale. Everything except the pureScale part is also reflected in IBM InfoSphere Warehouse, which is a near-superset of DB2.*
*Also, the data ingest part isn’t in base DB2.
Categories: Data warehousing, Database compression, IBM and DB2, RDF and graphs, Solid-state memory, Workload management | 6 Comments |
Our clients, and where they are located
From time to time, I disclose our vendor client lists. Another iteration is below, the first since a little over a year ago. To be clear:
- This is a list of Monash Advantage members.
- All our vendor clients are Monash Advantage members, unless …
- … we work with them primarily in their capacity as technology users. (A large fraction of our user clients happen to be SaaS vendors.)
- We do not usually disclose our user clients.
- We do not usually disclose our venture capital clients, nor those who invest in publicly-traded securities.
- Excluded from this round of disclosure is one vendor I have never written about.
- Included in this round of disclosure is one client paying for services partly in stock. All our other clients are cash-only.
For reasons explained below, I’ll group the clients geographically. Obviously, companies often have multiple locations, but this is approximately how it works from the standpoint of their interactions with me. Read more
Juggling analytic databases
I’d like to survey a few related ideas:
- Enterprises should each have a variety of different analytic data stores.
- Vendors — especially but not only IBM and Teradata — are acknowledging and marketing around the point that enterprises should each have a number of different analytic data stores.
- In addition to having multiple analytic data management technology stacks, it is also desirable to have an agile way to spin out multiple virtual or physical relational data marts using a single RDBMS. Vendors are addressing that need.
- Some observers think that the real essence of analytic data management will be in data integration, not the actual data management.
Here goes. Read more
The 2011/2012 Gartner Magic Quadrant for Business Intelligence Platforms — company-by-company comments
This is one of a series of posts on business intelligence and related analytic technology subjects, keying off the 2011/2012 version of the Gartner Magic Quadrant for Business Intelligence Platforms. The four posts in the series cover:
- Overview comments about the 2011/2012 Gartner Magic Quadrant for Business Intelligence Platforms, as well as a link to the actual document.
- Business intelligence industry trends — some of Gartner’s thoughts but mainly my own.
- (This post) Company-by-company comments based on the 2011/2012 Gartner Magic Quadrant for Business Intelligence Platforms.
- Third-party analytics, pulling together and expanding on some points I made in the first three posts.
The heart of Gartner Group’s 2011/2012 Magic Quadrant for Business Intelligence Platforms was the company comments. I shall expound upon some, roughly in declining order of Gartner’s “Completeness of Vision” scores, dubious though those rankings may be. Read more
Business intelligence industry trends
This is one of a series of posts on business intelligence and related analytic technology subjects, keying off the 2011/2012 version of the Gartner Magic Quadrant for Business Intelligence Platforms. The four posts in the series cover:
- Overview comments about the 2011/2012 Gartner Magic Quadrant for Business Intelligence Platforms, as well as a link to the actual document.
- (This post) Business intelligence industry trends — some of Gartner’s thoughts but mainly my own.
- Company-by-company comments based on the 2011/2012 Gartner Magic Quadrant for Business Intelligence Platforms.
- Third-party analytics, pulling together and expanding on some points I made in the first three posts.
Besides company-specific comments, the 2011/2012 Gartner Magic Quadrant for Business Intelligence (BI) Platforms offered observations on overall BI trends in a “Market Overview” section. I have mixed feelings about Gartner’s list. In particular:
- Not inconsistently with my comments on departmental analytics, Gartner sees actual BI business users as favoring ease of getting the job done, while IT departments are more concerned about full feature sets, integration, corporate standards, and license costs.
- However, Gartner says as a separate point that all kinds of users want to relieve some of the complexity of BI, and really of analytics in general. I agree, but don’t think Gartner did a great job in outlining how this complexity reduction could really work.
- Gartner is bullish on mobile business intelligence, but doesn’t really contradict my more skeptical take. Even as it confesses that mobile BI use cases are somewhat thin (my word, not Gartner’s, and no pun intended), it sees mobile BI rapidly becoming mainstream technology.
- Gartner makes a distinction between “data discovery” tools and “enterprise BI” platforms. By “data discovery” I think Gartner means what I’d call the “pattern discovery” focus of investigative analytics. Anyhow, it seems that Gartner:
- Sees users as being confused about how the traditional pattern-monitoring kinds of BI fit with the newer emphasis on investigative analytics, and …
- … shares that confusion itself.
- Gartner observes that “Most BI platforms are deployed as systems of performance measurement, not for decision support.” It evidently sees this as a bad tendency, which is thankfully changing. Automated decisioning is part of the fix Gartner sees, along with collaboration. While I agree on both counts, Gartner oddly doesn’t also connect this to the general rise of investigative analytics.
- Gartner also had a catch-all trend of “new use cases”, listing some examples, but also sort of confessing it wasn’t doing a great job of articulating the point. I think that part of the difficulty is contortions as to what is or isn’t BI; Gartner seems to run into expositional difficulties whenever it touches on the core point that analytics isn’t all about performance-monitoring BI. Another problem is that Gartner doesn’t seem to have really thought through what does and doesn’t work in the area of analytic applications.
Here’s the forest that I suspect Gartner is missing for the trees:
- Even though all-in-one enterprise BI platforms are great at getting data to a multitude of endpoints …
- … and even though the number of endpoints for data are increasing (more users, more devices) …
- … all-in-one enterprise BI platforms fall short in helping the data be used once it arrives …
- … and all-in-one enterprise BI platform vendors will find it hard to catch up with other vendors’ data-use capabilities.
Categories: Business intelligence, Business Objects, IBM and DB2, Microsoft and SQL*Server, MicroStrategy, Oracle, SAP AG | 11 Comments |
Comments on SAS
A reporter interviewed me via IM about how CIOs should view SAS Institute and its products. Naturally, I have edited my comments (lightly) into a blog post. They turned out to be clustered into three groups, as follows:
- SAS faces a number of challenges, not unlike those faced by other high-priced legacy technology vendors.
- It is used by organizations who have large budgets to pay for the product and to pay people to be expert on the product’s intricacies.
- SAS has not integrated with scale-out analytic DBMS technologies as well or quickly as had been hoped, or as earlier marketing suggested was likely.
- SAS has not been strong in helping its users do agile predictive analytics.
- SAS’ strengths are concentrated in product breadth:
- Lots of statistical algorithms.
- Various vertical products that make the modeling techniques more accessible in specific application domains.
- Various approaches to engineering for scalability — no one of those has been a table-thumping success to date, but SAS has the resources to keep trying.
- Some level of integration with its own business intelligence and text analytics products.
- For any particular use case, the burden of proof is on SAS alternatives to show that they have enough pieces in the toolkit to meet the needs.
- SPSS (now owned by IBM) also has legacy issues.
- KXEN is focused on marketing use cases.
- Mahout has been one of the less successful Hadoop-related open source projects.
- R-based technology is still maturing.
- The modeling capabilities (as opposed to just scoring) bundled into RDBMS and well-parallelized tend to be pretty limited. Apparent exceptions tend to just be R repackaged.
Categories: Analytic technologies, Data warehousing, Hadoop, IBM and DB2, KXEN, Predictive modeling and advanced analytics, SAS Institute | 18 Comments |
Microsoft SQL Server 2012 and enterprise database choices in general
Microsoft is launching SQL Server 2012 on March 7. An IM chat with a reporter resulted, and went something like this.
Reporter: [Care to comment]?
CAM: SQL Server is an adequate product if you don’t mind being locked into the Microsoft stack. For example, the ColumnStore feature is very partial, given that it can’t be updated; but Oracle doesn’t have columnar storage at all.
Reporter: Is the lock-in overall worse than IBM DB2, Oracle?
CAM: Microsoft locks you into an operating system, so yes.
Reporter: Is this release something larger Oracle or IBM shops could consider as a lower-cost alternative a co-habitation scenario, in the event they’re mulling whether to buy more Oracle or IBM licenses?
CAM: If they have a strong Microsoft-stack investment already, sure. Otherwise, why?
Reporter: [How about] just cost?
CAM: DB2 works just as well to keep Oracle honest as SQL Server does, and without a major operating system commitment. For analytic databases you want an analytic DBMS or appliance anyway.
Best is to have one major vendor of OTLP/general-purpose DBMS, a web DBMS, a DBMS for disposable projects (that may be the same as one of the first two), plus however many different analytic data stores you need to get the job done.
By “web DBMS” I mean MySQL, NewSQL, or NoSQL. Actually, you might need more than one product in that area.
Categories: Data warehousing, IBM and DB2, Microsoft and SQL*Server, Mid-range, MySQL, NoSQL, Oracle | 9 Comments |