IBM and DB2
Analysis of IBM and various of its product lines in database management, analytics, and data integration.
- Cognos
- solidDB
- (in The Monash Report) Operational and strategic issues for IBM
- (in Text Technologies) IBM in the text analytics market
- (in Software Memories) Historical notes on IBM
- (in Software Memories) Historical notes on Informix
Comments on Gartner’s 2012 Magic Quadrant for Data Warehouse Database Management Systems — evaluations
To my taste, the most glaring mis-rankings in the 2012/2013 Gartner Magic Quadrant for Data Warehouse Database Management are that it is too positive on Kognitio and too negative on Infobright. Secondarily, it is too negative on HP Vertica, and too positive on ParAccel and Actian/VectorWise. So let’s consider those vendors first.
Gartner seems confused about Kognitio’s products and history alike.
- Gartner calls Kognitio an “in-memory” DBMS, which is not accurate.
- Gartner doesn’t remark on Kognitio’s worst-in-class* compression.
- Gartner gives Kognitio oddly high marks for a late, me-too Hadoop integration strategy.
- Gartner writes as if Kognitio’s next attempt at the US market will be the first one, which is not the case.
- Gartner says that Kognitio pioneered data warehouse SaaS (Software as a Service), which actually has existed since the pre-relational 1970s.
Gartner is correct, however, to note that Kognitio doesn’t sell much stuff overall.
* non-existent
In the cases of HP Vertica, Infobright, ParAccel, and Actian/VectorWise, the 2012 Gartner Magic Quadrant for Data Warehouse Database Management’s facts are fairly accurate, but I dispute Gartner’s evaluation. When it comes to Vertica: Read more
Oracle and IBM — strategic context
By my standards, I’ve been writing a lot about Oracle and IBM recently. Let me now step back and review the context in which I view them.
At the highest level, Oracle and IBM have similar strategic priorities, in line with the Innovator’s Dilemma/Innovator’s Solution issues I keep mentioning. That is:
- Oracle and IBM sell mainly to large enterprises with complex IT needs.
- Oracle and IBM sell mainly to their respective existing customers.
- Oracle and IBM are looking to preserve and expand revenue, margins, and share-of-wallet at those large existing customers.
- Oracle and IBM rely on and encourage customers’ desire to consolidate purchasing among as few vendors as possible.
- Technical implications include:
- Oracle and IBM invest in features that only large, complex enterprises care about.
- Oracle and IBM offer many kinds of technology and services, which they strive to make work fairly well together.
Of course, there are major differences in the two companies’ product and service portfolios. Some of the biggest are: Read more
Categories: Buying processes, IBM and DB2, Oracle | 5 Comments |
IBM Pure jargon
As best I can tell, IBM now has three related families of hardware/software bundles, aka appliances, aka PureSystems, aka something that sounds like “expert system” but in fact has nothing to do with the traditional rules-engine meaning of that term. In particular,
- One of the three families is for the data tier, under the name PureData. That’s what’s new today.
- One of the three families is for the application tier, under the name PureApplication. More information can be found here.
- One of the three families is for “infrastructure”, under the name PureFlex. More information can be found here.
Within the PureData line, there are three sub-families:
- One is based on DB2 pureScale and is said to be “optimized exclusively for transactional data workloads”.
- One is based on Netezza, and is said to be “optimized exclusively for analytic workloads”.
- One is based on DB2 with the shared-nothing option, and is said to be “optimized exclusively for operational analytic data workloads”, notwithstanding that the underlying software has for years been IBM’s flagship general-purpose (non-mainframe) DBMS.
The Netezza part of the story seems to start:
- The Netezza name is being deprecated, except insofar as certain PureData systems are “Powered by Netezza Technology.”
- Netezza didn’t trumpet slipstream hardware enhancements even when it was independent, and IBM sure isn’t reversing that policy now.
- The Netezza software has been enhanced, most notably in a ~20X improvement in concurrency for “tactical” queries.
Perhaps someday I’ll be able to supply interesting details, for example about the concurrency improvement or about the uses (if any) customers are finding for Netezza’s in-database analytics — but as previously noted, analyzing big companies is hard.
Categories: Data warehouse appliances, IBM and DB2, Netezza, OLTP | 4 Comments |
Analyzing big companies is hard
Analyzing companies of any size is hard. Analyzing large ones, however, is harder yet.
- I get (much) less substance in an hour on the phone with a megacorp than I do when I talk with a smaller company.
- What large companies say is less reliable than what I hear from smaller ones.
- Large companies have policies, procedures, bureaucracy and attitudes that get in the way of communicating in the first place.
Such limitations should be borne in mind in connection with anything I write about, for example, Oracle, Microsoft, IBM, or SAP.
There are many reasons for large companies to communicate less usefully with analysts than smaller ones do. Some of the biggest are:
- For reasons of internal information flow, the people I talk with just know less than their counterparts at smaller companies. Similarly, what they do “know” is more often wrong, since different parts of the same company may not hold identical views.
- That’s when we talk about real issues at all, which can get crowded out by large companies’ voluminous efforts in complex positioning, messaging, and product names.
- Huge companies have huge bureaucracies, and they hurt.
- A small company C-level executive can make smart decisions about what to say or not say. A large company minion doesn’t have the same freedom.
- Just the process of getting access to even a mid-level spokesminion at a large company is harder than reaching a senior person at a smaller outfit.
- Large firms are clearest when communicating with their existing customers and those organizations’ key influencers. They’re less effective or clear when opening themselves up to competitive comparisons.
- If a company wants to behave unethically in its analyst dealings, there are economies of scale to doing so.
Categories: About this blog, IBM and DB2, Microsoft and SQL*Server, Oracle, SAP AG, Sybase | 6 Comments |
How immediate consistency works
This post started as a minor paragraph in another one I’m drafting. But it grew. Please also see the comment thread below.
Increasingly many data management systems store data in a cluster, putting several copies of data — i.e. “replicas” — onto different nodes, for safety and reliable accessibility. (The number of copies is called the “replication factor”.) But how do they know that the different copies of the data really have the same values? It seems there are three main approaches to immediate consistency, which may be called:
- Two-phase commit (2PC)
- Read-your-writes (RYW) consistency
- Prudent optimism 🙂
I shall explain.
Two-phase commit has been around for decades. Its core idea is:
- One node commands other nodes (and perhaps itself) to write data.
- The other nodes all reply “Aye, aye; we are ready and able to do that.”
- The first node broadcasts “Make it so!”
Unless a piece of the system malfunctions at exactly the wrong time, you’ll get your consistent write. And if there indeed is an unfortunate glitch — well, that’s what recovery is for.
But 2PC has a flaw: If a node is inaccessible or down, then the write is blocked, even if other parts of the system were able to accept the data safely. So the NoSQL world sometimes chooses RYW consistency, which in essence is a loose form of 2PC: Read more
Categories: Aster Data, Clustering, Hadoop, HBase, IBM and DB2, Netezza, NoSQL, Teradata, Vertica Systems | 11 Comments |
Hadoop notes: Informatica, Splunk, and IBM
Informatica, Splunk, and IBM are all public companies, and correspondingly reticent to talk about product futures. Hence, anything I might suggest about product futures from any of them won’t be terribly detailed, and even the vague generalities are “the Good Lord willin’ an’ the creek don’ rise”.
Never let a rising creek overflow your safe harbor.
Anyhow:
1. Hadoop can be an awesome ETL (Extract/Transform/Load) execution engine; it can handle huge jobs and perform a great variety of transformations. (Indeed, MapReduce was invented to run giant ETL jobs.) Thus, if one offers a development-plus-execution stack for ETL processes, it might seem appealing to make Hadoop an ETL execution option. And so:
- I’ve already posted that BI-plus-light-ETL vendors Pentaho and Datameer are using Hadoop in that way.
- Informatica will be using Hadoop as an execution option too.
Informatica told me about other interesting Hadoop-related plans as well, but I’m not sure my frieNDA allows me to mention them at all.
IBM, however, is standing aside. Specifically, IBM told me that it doesn’t see the point of doing the same thing, as its ETL engine — presumably derived from the old Ascential product line — is already parallel and performant enough.
2. Last year, I suggested that Splunk and Hadoop are competitors in managing machine-generated data. That’s still true, but Splunk is also preparing a Hadoop co-opetition strategy. To a first approximation, it’s just Hadoop import/export. However, suppose you view Splunk as offering a three-layer stack: Read more
Categories: EAI, EII, ETL, ELT, ETLT, Hadoop, IBM and DB2, Informatica, Log analysis, MapReduce, Splunk | 9 Comments |
In-database analytics — analytic glossary draft entry
This is a draft entry for the DBMS2 analytic glossary. Please comment with any ideas you have for its improvement!
Note: Words and phrases in italics will be linked to other entries when the glossary is complete.
“In-database analytics” is a catch-all term for analytic capabilities, beyond standard SQL, running on the same machine as and under the management of an analytic DBMS. These can run in one or both of two modes:
- In-process or unfenced, i.e. in the same process as the DBMS itself. This option gives maximum performance, but any defects in the analytic code may crash the whole DBMS. Also, it generally requires that the code be in the same language as the DBMS, i.e. C++.
- Out-of-process or fenced, i.e. in a separate process. This option sacrifices performance, in favor of reliability and language flexibility.
In-database analytics may offer great performance and scalability advantages versus the alternative of extracting data and having it be processed on a separate server. This is particularly likely to be the case in MPP (Massively Parallel Processing) analytic DBMS environments.
Examples of in-database analytics include:
- Creating temporary data structures that persist past the life of a query.
- Creating temporary data structures that are non-tabular.
- Predictive modeling that uses all the same nodes in an MPP cluster where the data resides.
- Predictive analytics (scoring only).
Other common domains for in-database analytics include sessionization, time series analysis, and relationship analytics.
Notable products offering in-database analytics include:
- Teradata Aster SQL/MR.
- Multiple other analytic platforms, such as Sybase IQ, Vertica, or IBM Netezza. Indeed, in-database analytics are a defining feature of analytic platforms.
- Fuzzy Logix (for predictive analytics).
Categories: Analytic glossary, Aster Data, Data warehousing, IBM and DB2, MapReduce, Netezza, Parallelization, Predictive modeling and advanced analytics, Sybase, Teradata, Vertica Systems | 8 Comments |
Data warehouse appliance — analytic glossary draft entry
This is a draft entry for the DBMS2 analytic glossary. Please comment with any ideas you have for its improvement!
Note: Words and phrases in italics will be linked to other entries when the glossary is complete.
A data warehouse appliance is a combination of hardware and software that includes an analytic DBMS (DataBase Management System). However, some observers incorrectly apply the term “data warehouse appliance” to any analytic DBMS.
The paradigmatic vendors of data warehouse appliances are:
- Teradata, which embraced the term “data warehouse appliance” in 2008.
- Netezza — now an IBM company — which popularized the term “data warehouse appliance” in the 2000s.
Further, vendors of analytic DBMS commonly offer — directly or through partnerships — optional data warehouse appliance configurations; examples include:
- Greenplum, now part of EMC.
- Vertica, now an HP company.
- IBM DB2, under the brand “Smart Analytic System”.
- Microsoft (Parallel Data Warehouse).
Oracle Exadata is sometimes regarded as a data warehouse appliance as well, despite not being solely focused on analytic use cases.
Data warehouse appliances inherit marketing claims from the category of analytic DBMS, such as: Read more
Categories: Analytic glossary, Data warehouse appliances, Data warehousing, EMC, Exadata, Greenplum, HP and Neoview, IBM and DB2, Microsoft and SQL*Server, Netezza, Oracle, Teradata | 4 Comments |
Notes on some basic database terminology
In a call Monday with a prominent company, I was told:
- Teradata, Netezza, Greenplum and Vertica aren’t relational.
- Teradata, Netezza, Greenplum and Vertica are all data warehouse appliances.
That, to put it mildly, is not accurate. So I shall try, yet again, to set the record straight.
In an industry where people often call a DBMS just a “database” — so that a database is something that manages a database! — one may wonder why I bother. Anyhow …
1. The products commonly known as Oracle, Exadata, DB2, Sybase, SQL Server, Teradata, Sybase IQ, Netezza, Vertica, Greenplum, Aster, Infobright, SAND, ParAccel, Exasol, Kognitio et al. all either are or incorporate relational database management systems, aka RDBMS or relational DBMS.
2. In principle, there can be difficulties in judging whether or not a DBMS is “relational”. In practice, those difficulties don’t arise — yet. Every significant DBMS still falls into one of two categories:
- Relational:
- Was designed to do relational stuff* from the get-go, even if it now does other things too.
- Supports a lot of SQL.
- Non-relational:
- Was designed primarily to do non-relational things.*
- Doesn’t support all that much SQL.
*I expect the distinction to get more confusing soon, at which point I’ll adopt terms more precise than “relational things” and “relational stuff”.
3. There are two chief kinds of relational DBMS: Read more
Big Data hype?
A reporter wrote in to ask whether investor interest in “Big Data” was justified or hype. (More precisely, that’s how I reinterpreted his questions. 🙂 ) His examples were Splunk’s IPO, Teradata’s stock price increase, and Birst’s financing. In a nutshell:
- My comments, lightly edited, are in plain text below.
- Further thoughts are in italics.
- Of course I also linked him to my post “Big Data” has jumped the shark.
- Overall, my responses boil down to “Of course there’s some hype.”
1. A great example of hype is that anybody is calling Birst a “Big Data” or “Big Data analytics” company. If anything, Birst is a “little data” analytics company that claims, as a differentiating feature, that it can handle ordinary-sized data sets as well. Read more