DataStax introduces a Cassandra-based Hadoop distribution called Brisk
Cassandra company DataStax is introducing a Hadoop distribution called Brisk, for use cases that combine short-request and analytic processing. Brisk in essence replaces HDFS (Hadoop Distributed File System) with a Cassandra-based file system called CassandraFS. The whole thing is due to be released (Apache open source) within the next 45 days.
The core claims for Cassandra/Brisk/CassandraFS are:
- CassandraFS has the same interface as HDFS. So, in particular, you should be able to use most Hadoop add-ons with Brisk.
- CassandraFS has comparable performance to HDFS on sequential scans. That’s without predicate pushdown to Cassandra, which is Coming Soon but won’t be in the first Brisk release.
- Brisk/CassandraFS is much easier to administer than HDFS. In particular, there are no NameNodes, JobTracker single points of failure, or any other form of head node. Brisk/CassandraFS is strictly peer-to-peer.
- Cassandra is far superior to HBase for short-request use cases, specifically with 5-6X the random-access performance.
There’s a pretty good white paper around all this, which also recites general Cassandra claims — [edit] and here at last is the link.
Categories: Cassandra, DataStax, Hadoop, HBase, MapReduce, Open source | 3 Comments |
eBay followup — Greenplum out, Teradata > 10 petabytes, Hadoop has some value, and more
I chatted with Oliver Ratzesberger of eBay around a Stanford picnic table yesterday (the XLDB 4 conference is being held at Jacek Becla’s home base of SLAC, which used to stand for “Stanford Linear Accelerator Center”). Todd Walter of Teradata also sat in on the latter part of the conversation. Things I learned included: Read more
Categories: Data warehousing, Derived data, eBay, Greenplum, Hadoop, HBase, Log analysis, Petabyte-scale data management, Teradata | 30 Comments |
More on NoSQL and HVSP (or OLRP)
Since posting last Wednesday morning that I’m looking into NoSQL and HVSP, I’ve had a lot of conversations, including with (among others):