Big data terminology and positioning
Recently, I observed that Big Data terminology is seriously broken. It is reasonable to reduce the subject to two quasi-dimensions:
- Bigness — Volume, Velocity, size
- Structure — Variety, Variability, Complexity
given that
- High-velocity “big data” problems are usually high-volume as well.*
- Variety, variability, and complexity all relate to the simply-structured/poly-structured distinction.
But the conflation should stop there.
*Low-volume/high-velocity problems are commonly referred to as “event processing” and/or “streaming”.
When people claim that bigness and structure are the same issue, they oversimplify into mush. So I think we need four pieces of terminology, reflective of a 2×2 matrix of possibilities. For want of better alternatives, my suggestions are:
- Relational big data is data of high volume that fits well into a relational DBMS.
- Multi-structured big data is data of high volume that doesn’t fit well into a relational DBMS. Alternative: Poly-structured big data.
- Conventional relational data is data of not-so-high volume that fits well into a relational DBMS. Alternatives: Ordinary/normal/smaller relational data.
- Smaller poly-structured data is data for which dynamic schema capabilities are important, but which doesn’t rise to “big data” volume.
The cool aspects of Odiago WibiData
Christophe Bisciglia and Aaron Kimball have a new company.
- It’s called Odiago, and is one of my gratifyingly more numerous tiny clients.
- Odiago’s product line is called WibiData, after the justly popular We Be Sushi restaurants.
- We’ve agreed on a split exclusive de-stealthing launch. You can read about the company/founder/investor stuff on TechCrunch. But this is the place for — well, for the tech crunch.
WibiData is designed for management of, investigative analytics on, and operational analytics on consumer internet data, the main examples of which are web site traffic and personalization and their analogues for games and/or mobile devices. The core WibiData technology, built on HBase and Hadoop,* is a data management and analytic execution layer. That’s where the secret sauce resides. Also included are:
- REST APIs for interactive access.
- Import/export tools, including JDBC access.
- Management tools.
- Analytic libraries — data mining, predictive analytics, machine learning, and so on.
The whole thing is in beta, with about three (paying) beta customers.
*And Avro and so on.
The core ideas of WibiData include:
- ALL data pertaining to a single user (or mobile device) is kept in a single, possibly very long, HBase row.
- There are two primary operators in WibiData, Produce and Gather.
- Produce operates on single rows. It can operate on one row at HBase speed (milliseconds) if you need to inform an interactive user response. Or it can operate on the whole database in batch via Hadoop MapReduce.
- It is reasonable to think of Produce as mainly doing two things. One is the aforementioned serving of data out of WibiData into interactive applications. The other is scoring, classifying, recommending, etc. on individual users (i.e. rows), in line with an analytic model.
- Gather typically operates on all your rows at once, and emits suitable input for a MapReduce Reduce step. It is reasonable to think of Gather as being a key cog in the training of analytic models.
- HBase schema management is done at the WibiData system level, not directly in applications. There’s a WibiData HBase data dictionary, powered by a set of system tables, that specifies cell data types/record types and, in effect, primitive schemas.
Categories: Data models and architecture, Hadoop, HBase, NoSQL, Predictive modeling and advanced analytics, Web analytics, WibiData | 14 Comments |
NoSQL notes
Last week I visited with James Phillips of Couchbase, Max Schireson and Eliot Horowitz of 10gen, and Todd Lipcon, Eric Sammer, and Omer Trajman of Cloudera. I guess it’s time for a round-up NoSQL post. 🙂
Views of the NoSQL market horse race are reasonably consistent, with perhaps some elements of “Where you stand depends upon where you sit.”
- As James tells it, NoSQL is simply a three-horse race between Couchbase, MongoDB, and Cassandra.
- Max would include HBase on the list.
- Further, Max pointed out that metrics such as job listings suggest MongoDB has the most development activity, and Couchbase/Membase/CouchDB perhaps have less.
- The Cloudera guys remarked on some serious HBase adopters.*
- Everybody I spoke with agreed that Riak had little current market presence, although some Basho guys could surely be found who’d disagree.
Categories: Basho and Riak, Cassandra, Cloudera, Clustering, Couchbase, HBase, Market share and customer counts, MongoDB, NoSQL, Open source, Oracle, Parallelization | 12 Comments |
Couchbase business update
I decided I needed some Couchbase drilldown, on business and technology alike, so I had solid chats with both CEO Bob Wiederhold and Chief Architect Dustin Sallings. Pretty much everything I wrote at the time Membase and CouchOne merged to form Couchbase (the company) still holds up. But I have more detail now. 😉
Context for any comments on customer traction includes:
- Membase went into limited production release in October, and full release in January. Similar things are true of CouchDB.
- Hence, most sales of Couchbase’s products have been made over the past 6 months.
- Couchbase (the merged product) is at this point only in a pre-production developer’s release.
- Couchbase has both a direct sales force and a classic open-source “funnel”-based online selling model. Naturally, Couchbase’s understanding of what its customers are doing is more solid with respect to the direct sales base.
- Most of Couchbase’s revenue to date seems to have come from a limited number of big-ticket “lighthouse” accounts (as opposed to, say, the larger number of smaller deals that come in through the online funnel).
That said,
- Most Membase purchases are for new applications, as opposed to memcached migrations. However, customers are the kinds of companies that probably also are using memcached elsewhere.
- Most other Membase purchases are replacements for the Membase/MySQL combination. Bob says those are easy sales with short sales cycles.
- Pure memcached support is a small but non-zero business for Couchbase, and a fine source of upsell opportunities.
- In the pipeline but not so much yet in the customer base are SaaS vendors and the like who use and may want to replace traditional DBMS such as Oracle. Other than among those, Couchbase doesn’t compete much yet with Oracle et al.
- Pure CouchDB isn’t all that much of a business, at least relative to community size, as CouchDB is a single-server product commonly used by people who are content not to pay for support.
Membase sales are concentrated in five kinds of internet-centric companies, which in declining order are: Read more
Introduction to Zettaset
Zettaset is confusing, but as best I understand:
- Zettaset sells Hadoop add-on/enhancement software, with what might be called an enterprise-friendly Hadoop management focus.
- “Business intelligence” gets mentioned prominently in Zettaset’s marketing, but not in what executives now say. Apparently the BI focus is old news, predating a hard pivot.
- Zettaset’s marketing also mentions NoSQL, for little reason that I can discern, except insofar as Zettaset relies on HBase.
- CEO Brian Christian told me that Zettaset has been around since December, 2007; on the other hand, Zettaset press release boilerplate says Zettaset was founded in 2009. Apparently, the distinction is that Zettaset was founded in 2007 as a consultancy, but turned its efforts to software development in 2009.
- Zettaset has fewer than 20 people but is “hiring like mad.”
- Zettaset just did a $3 million Series A round — or maybe is just announcing it now; the latter interpretation might explain how those 20ish people are getting paid.
- Zettaset’s product was just launched and made generally available, notwithstanding that Version 2 of Zettaset’s product was shipped last year to fanfare on Zettaset’s blog.
- Zettaset’s pricing is based on how many terabytes of compressed data it is being used to manage.
- Until very recently, Zettaset was called GOTO Metrics; I imagine the name change is connected to the strategy pivot.
- Zettaset told me of one big customer — with an almost-petabyte Hadoop cluster before compression — namely Zions Bancorporation.
- Zettaset has “a number of paying customers” overall.
Categories: Hadoop, HBase, MapReduce, Market share and customer counts, Specific users, Zettaset | 4 Comments |
HBase is not broken
It turns out that my impression that HBase is broken was unfounded, in at least two ways. The smaller is that something wrong with the HBase/Hadoop interface or Hadoop’s HBase support cannot necessarily be said to be wrong with HBase (especially since HBase is no longer a Hadoop subproject). The bigger reason is that, according to consensus, HBase has worked pretty well since the .90 release in January of this year.
After Michael Stack of StumbleUpon beat me up for a while,* Omer Trajman of Cloudera was kind enough to walk me through HBase usage. He is informed largely by 18 Cloudera customers, plus a handful of other well-known HBase users such as Facebook, StumbleUpon, and Yahoo. Of the 18 Cloudera customers using HBase that Omer was thinking of, 15 are in HBase production, one is in HBase “early production”, one is still doing R&D in the area of HBase, and one is a classified government customer not providing such details. Read more
Categories: Cloudera, Derived data, Facebook, Hadoop, HBase, Log analysis, Market share and customer counts, Open source, Specific users, Web analytics | 6 Comments |
Soundbites: the Facebook/MySQL/NoSQL/VoltDB/Stonebraker flap, continued
As a follow-up to the latest Stonebraker kerfuffle, Derrick Harris asked me a bunch of smart followup questions. My responses and afterthoughts include:
- Facebook et al. are in effect Software as a Service (SaaS) vendors, not enterprise technology users. In particular:
- They have the technical chops to rewrite their code as needed.
- Unlike packaged software vendors, they’re not answerable to anybody for keeping legacy code alive after a rewrite. That makes migration a lot easier.
- If they want to write different parts of their system on different technical underpinnings, nobody can stop them. For example …
- … Facebook innovated Cassandra, and is now heavily committed to HBase.
- It makes little sense to talk of Facebook’s use of “MySQL.” Better to talk of Facebook’s use of “MySQL + memcached + non-transparent sharding.” That said:
- It’s hard to see why somebody today would use MySQL + memcached + non-transparent sharding for a new project. At least one of Couchbase or transparently-sharded MySQL is very likely a superior alternative. Other alternatives might be better yet.
- As noted above in the example of Facebook, the many major web businesses that are using MySQL + memcached + non-transparent sharding for existing projects can be presumed able to migrate away from that stack as the need arises.
Continuing with that discussion of DBMS alternatives:
- If you just want to write to the memcached API anyway, why not go with Couchbase?
- If you want to go relational, why not go with MySQL? There are many alternatives for scaling or accelerating MySQL — dbShards, Schooner, Akiban, Tokutek, ScaleBase, ScaleDB, Clustrix, and Xeround come to mind quickly, so there’s a great chance that one or more will fit your use case. (And if you don’t get the choice of MySQL flavor right the first time, porting to another one shouldn’t be all THAT awful.)
- If you really, really want to go in-memory, and don’t mind writing Java stored procedures, and don’t need to do the kinds of joins it isn’t good at, but do need to do the kinds of joins it is, VoltDB could indeed be a good alternative.
And while we’re at it — going schema-free often makes a whole lot of sense. I need to write much more about the point, but for now let’s just say that I look favorably on the Big Four schema-free/NoSQL options of MongoDB, Couchbase, HBase, and Cassandra.
Hadoop futures and enhancements
Hadoop is immature technology. As such, it naturally offers much room for improvement in both industrial-strengthness and performance. And since Hadoop is booming, multiple efforts are underway to fill those gaps. For example:
- Cloudera’s proprietary code is focused on management, set-up, etc.
- The “Phase 1” plans Hortonworks shared with me for Apache Hadoop are focused on industrial-strengthness, as are significant parts of “Phase 2”.*
- MapR tells a performance story versus generic Apache Hadoop HDFS and MapReduce. (One aspect of same is just C++ vs. Java.)
- So does Hadapt, but mainly vs. Hive.
- Cloudera also tells me there’s a potential 4-5X performance improvement in Hive coming down the pike from what amounts to an optimizer rewrite.
(Zettaset belongs in the discussion too, but made an unfortunate choice of embargo date.)
Categories: Cloudera, Greenplum, Hadapt, Hadoop, HBase, MapR, MapReduce, Parallelization, Zettaset | 20 Comments |
What to do about “unstructured data”
We hear much these days about unstructured or semi-structured (as opposed to) structured data. Those are misnomers, however, for at least two reasons. First, it’s not really the data that people think is un-, semi-, or fully structured; it’s databases.* Relational databases are highly structured, but the data within them is unstructured — just lists of numbers or character strings, whose only significance derives from the structure that the database imposes.
*Here I’m using the term “database” literally, rather than as a concise synonym for “database management system”. But see below.
Second, a more accurate distinction is not whether a database has one structure or none — it’s whether a database has one structure or many. The easiest way to see this is for databases that have clearly-defined schemas. A relational database has one schema (even if it is just the union of various unrelated sub-schemas); an XML database, however, can have as many schemas as it contains documents.
One small terminological problem is easily handled, namely that people don’t talk about true databases very often, at least when they’re discussing generalities; rather, they talk about data and DBMS.* So let’s talk of DBMS being “structured” singly or multiply or whatever, just as the databases they’re designed to manage are.
*And they refer to the DBMS as “databases,” because they don’t have much other use for the word.
All that said — I think that single vs. multiple database structures isn’t a bright-line binary distinction; rather, it’s a spectrum. For example: Read more
Categories: Cassandra, Couchbase, Data models and architecture, HBase, IBM and DB2, MarkLogic, MongoDB, NoSQL, Splunk, Theory and architecture | 19 Comments |
Attensity update
I talked with Michelle de Haaff and Ian Hersey of Attensity back in February. We covered a lot of ground, so let’s start with a very high-level view.
- Two years ago, Attensity merged with two other companies in somewhat related businesses, thus expanding 4X or so in size.
- Due to the merger, Attensity now has two core lines of business:
- Text analytics.
- Driving actions, such as call center or social media response, based on text analytics.
- The combined Attensity is part American, part German.
- Attensity’s German part compels it to do some public financial reporting. Attensity will do $50-60 million in 2011 revenue.
- Attensity crunches text in 17 languages. English is preeminent. #2 is — you guessed it! — German.
- A big part of Attensity’s business (or at least of its value proposition) is analyzing the text in social media. Attensity boasts coverage of 75 million social media sources, such as blogs, forums, or review sites.
The four most interesting technical points were probably:
- Attensity has changed how it does exhaustive extraction. I’m having some trouble writing that part up, so for now I’ll just refer you to Attensity’s own description of the new way of doing things.
- Attensity has development work underway meant to address some of the problems in text analytics/other analytics integration. I don’t feel I got enough detail to want to talk about that yet.
- Attensity runs its own data centers, with approximately 60 Hadoop/HBase nodes and 30 nodes of Apache Solr (open source text search). More on that below.
- Attensity now OEMs Vertica. More on that below too.
Some more specific notes include: Read more